Spermatozoa represent a highly specialized cell type, with a minimalist structure designed to fulfil a single principal function: the transport of an intact single-copy haploid genome to the site of fertilization in the oviduct, and consequent zygote formation. They have lost most of their original cytoplasm, and remaining organelles are extremely modified. One result of this is that biochemical dynamics are restricted by a lack of cytoplasmic diffusion and a dramatic compartmentalization, with an increased emphasis on the physicochemical modulation of membranes. This is also reflected in a truncated apoptotic pathway, described in this issue of the Biochemical Journal in an article by Koppers et al., which leads to a so-called 'silent response' in the female tract, whereby unused sperm are removed without inflammatory consequences that might otherwise be detrimental to the new embryo. This new study shows that sperm have not simply jettisoned unwanted cellular components, but have evolved a very appropriate systems biology adapted to the specialist role they have to perform.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20110766DOI Listing

Publication Analysis

Top Keywords

systems biology
8
special systems
4
biology sperm
4
sperm spermatozoa
4
spermatozoa represent
4
represent highly
4
highly specialized
4
specialized cell
4
cell type
4
type minimalist
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!