It is well known that physiological functions and pathological conditions of cells and tissues can be influenced not only by chemical molecules, but also by physical stimuli such as electromagnetic waves. In particular, epidemiological studies suggest possible associations between exposure to electromagnetic fields and an increased risk of tumors and neurodegenerative disorders, such as Alzheimer's disease. However, depending on the dose and on the length of treatment, the electromagnetic stimuli can be harmful or induce a cytoprotective cellular response, suggesting a possible application in medical therapy. In this study, under a tissue engineering viewpoint, we investigated the effects of an electromagnetic wave (magnetic field intensity, 2 mT; frequency, 75 Hz) on a neuronal cellular model characterized by the overexpression of the amyloid precursor protein (APP). After a prolonged electromagnetic treatment, lower mitochondrial activity and proliferation rate, resulting in a higher cellular quiescence, were observed. Focusing on the stress and oxidative pathways, we detected an overall increase of two fundamental proteins, the chaperone heat shock protein HSP70 and the free radical scavenger superoxide dismutase-1 enzyme (SOD-1). Interestingly, we found that the electromagnetic stimulation promotes the nonamyloidogenic processing of APP through an increased expression of the α-secretase ADAM10 and an enhanced release of the soluble neurotrophic factor sAPPα (a product of the ADAM10-mediated cleavage of APP). In conclusion, these findings suggest that the electromagnetic stimulus, if properly administered in terms of dose and timing, is able to induce a cytoprotective response in the cell. Moreover, these results suggest a possible use of this particular physical stimulation to improve the functional capability of the cells to face noxae.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2011.0071DOI Listing

Publication Analysis

Top Keywords

cytoprotective response
8
electromagnetic
8
electromagnetic stimulation
8
induce cytoprotective
8
response induced
4
induced electromagnetic
4
stimulation sh-sy5y
4
sh-sy5y human
4
human neuroblastoma
4
neuroblastoma cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!