A novel bacterial strain HS0904 was isolated from a soil sample using 3,5-bis(trifluoromethyl) acetophenone as the sole carbon source. This bacterial isolate can asymmetrically reduce 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol with high enantiometric excess (ee) value. Based on its morphological, physiological characteristics, Biolog, 16S rDNA sequence and phylogenetic analysis, strain HS0904 was identified as Leifsonia xyli HS0904. To our knowledge, this is the first reported case on the species L. xyli exhibited R-stereospecific carbonyl reductase and used for the preparation of chiral (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. The optimization of parameters for microbial transformation of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol catalyzed by whole cells of L. xyli HS0904 was carried out by examining some key factors including buffer pH, reaction temperature, shaking speed, substrate concentration, and reaction time. The obtained optimized conditions for the bioreduction are as follows: buffer pH 8.0, 70 mM of 3,5-bis(trifluoromethyl) acetophenone, 100 g l(-1) of glucose as co-substrate, 200 g l(-1) of resting cells as biocatalyst, reaction for 30 h at 30 °C and 200 rpm. Under above conditions, 99.4% of product ee and best yield of 62% were obtained, respectively. The results indicated that isolate L. xyli HS0904 is a novel potential biocatalyst for the production of (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-011-3233-3DOI Listing

Publication Analysis

Top Keywords

35-bistrifluoromethyl acetophenone
20
1r-[35-bistrifluoromethylphenyl] ethanol
20
xyli hs0904
16
acetophenone 1r-[35-bistrifluoromethylphenyl]
12
leifsonia xyli
8
hs0904 novel
8
strain hs0904
8
hs0904
6
35-bistrifluoromethyl
5
acetophenone
5

Similar Publications

Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation.

Appl Microbiol Biotechnol

December 2024

Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.

Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.

View Article and Find Full Text PDF

This paper describes a ferric nitrene/photoredox dual-catalyzed anti-Markovnikov ring-opening of epoxides under neutral conditions for providing α-substituted acetophenones. A DFT-based calculation supported the reaction regioselectivity. The catalytic system could also be applied to the formation of C-O and C-N bonds nucleophilic functionalization of benzylic C-H bonds.

View Article and Find Full Text PDF

[Metabolomics study on anti-radiation effect of Yiguan Decoction].

Zhongguo Zhong Yao Za Zhi

October 2024

School of Traditional Chinese Medicine,Guangdong Pharmaceutical University Guangzhou 511436, China Institute of Radiation Medicine,Academy of Military Medical Sciences,Academy of Military Sciences Beijing 100850, China.

The gas chromatography-mass spectrometer(GC-MS) metabolomics method was used to investigate the anti-radiation effect of Yiguan Decoction water extract on mice and explore its related pathways and mechanisms of action. Healthy SPF male mice from Kunming were randomly assigned to six groups: blank group, model group, positive drug group, and high-dose, medium-dose, and low-dose groups of Yiguan Decoction, with ten mice in each group. Mice were prophylactically dosed for six days, and ~(60)Co γ ray with 5 Gy was used to establish a radiation mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates Guizhi Fuling Formula (GFF) and α-adrenergic receptors (α-AR) using a novel method involving Colicin L7 DNase (CL7) and its immune protein (Im7) for immobilizing α-AR to a column.
  • The immobilization resulted in a stable α-AR column, facilitating the screening of active compounds in GFF, leading to the identification of paeoniflorin, cinnamic acid, and paeonol.
  • Notably, cinnamic acid and paeonol bind to the same site on α-AR as the drug tamsulosin, demonstrating the potential of this method for rapid analysis of functional compounds from
View Article and Find Full Text PDF

All1750 of Anabaena PCC 7120 encodes a novel NAD-dependent amine dehydrogenase having broad substrate range.

Int J Biol Macromol

December 2024

Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!