Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a method for measuring the optical transfer function (OTF) of a camera lens using a tartan test pattern containing sinusoidal functions with multiple frequencies and orientations. The method is designed to optimize measurement accuracy for an adjustable set of sparse spatial frequencies and be reliable and fast in a wide range of measurement conditions. We describe the pattern design and the algorithm for estimating the OTF accurately from a captured image. Simulations show the tartan method is significantly more accurate than the International Organization for Standardization 12233 standard slanted-edge method. Experimental results from the tartan method were reproducible to 0.01 root mean square and in reasonable agreement with the slanted-edge method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.50.002158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!