Adoptive therapy with T-cell receptor (TCR)-engineered T cells is a promising approach in cancer treatment. While usage of T cells specific for tumor-associated antigens (TAAs) can lead to serious side effects because of autoimmunity, targeting true tumor-specific mutations, such as the products of translocations in leukemias, should reduce such a risk. A potentially ideal target might be the chimeric protein TEL-AML1, which results from the chromosomal translocation 12;21 and represents the most common fusion gene in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Within the fusion region of TEL-AML1, a single epitope has been described by reverse immunology as immunogenic in HLA-A*0201 restriction settings. As a potential source of TCRs specific for this TEL-AML1 epitope, we have used mice expressing a human TCR-αβ repertoire and human MHC class I. Surprisingly, we have found that, although a specific functional CD8(+) T-cell response against this peptide could be evoked, the described epitope was in fact not endogenously processed. Analyses done with a potent antigen-presenting cell line, as well as with purified human proteasomes, support the conclusion that this peptide cannot be proposed as a potential target in immunotherapy of ALL in HLA-A*0201-restricted fashion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2010-12-325035 | DOI Listing |
Int J Mol Sci
December 2024
College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.
View Article and Find Full Text PDFJ Infect Chemother
January 2025
Department of Respiratory Medicine, Hamamatsu Medical Center, Hamamatsu, Japan.
We describe a rare case of spontaneous remission of Pneumocystis jirovecii pneumonia (PCP) in a 42-year-old patient with human immunodeficiency virus (HIV) infection, followed by severe pulmonary nocardiosis. To our knowledge, this is the first report of spontaneous remission of PCP in a completely untreated patient with HIV infection. The patient, a bisexual Japanese man, presented with fever and anorexia and had a history of non-compliance with antiretroviral therapy (ART) for 13 years.
View Article and Find Full Text PDFChaos
January 2025
Department of Mathematics, Indian Institute of Technology Patna, Patna 801103, India.
Human immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.
View Article and Find Full Text PDFCNS Drugs
January 2025
School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia.
Background: Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Immunology and.
Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!