Asymmetric total synthesis of (-)-saframycin A from L-tyrosine.

J Org Chem

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China.

Published: July 2011

The asymmetric total synthesis of (-)-saframycin A, a natural antitumor product of the tetrahydroisoquinoline antitumor antibiotics family, has been accomplished by employing L-tyrosine as the starting chiral building block in 24 steps for the longest linear sequence in an overall yield of 9.7%. The key steps in the synthesis involve stereoselective intermolecular and intramolecular Pictet-Spengler reactions, which induced the correct stereochemistry at C-1 and C-11, respectively. The selective protection-deprotection protocol of an amino group in the two-step transformation from intermediate 10 to 12 and a hydroxyl group in the first two steps resulted in both high selectivity and efficiency of the synthetic route.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo200758rDOI Listing

Publication Analysis

Top Keywords

asymmetric total
8
total synthesis
8
synthesis --saframycin
8
--saframycin l-tyrosine
4
l-tyrosine asymmetric
4
--saframycin natural
4
natural antitumor
4
antitumor product
4
product tetrahydroisoquinoline
4
tetrahydroisoquinoline antitumor
4

Similar Publications

The first asymmetric total synthesis of the tetraterpenoid (+)-7,7'-bistaxodione () via a unique late-stage electrochemical oxidative dimerization of a diterpenoid quinone methide tumor Inhibitor (+)-taxodione () has been described. The naturally occurring monomer was synthesized from aromatic abietane diterpenoid, ferruginol (1e) . Further, an efficient convergent synthetic route toward the naturally occurring aromatic abietane terpenoids has been shown via a Lewis acid-mediated diastereoselective cationic epoxy-ene cyclization.

View Article and Find Full Text PDF

Flow chemistry-enabled asymmetric synthesis of cyproterone acetate in a chemo-biocatalytic approach.

Nat Commun

January 2025

Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.

Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.

View Article and Find Full Text PDF

The asymmetric total synthesis of isolinearol, a -dolastane-type diterpenoid that inhibits byssal thread formation by mussels, has been achieved. In the synthesis, the key features include an intramolecular reductive nucleophilic addition using a low-valence titanium species and the direct installation of a ketone side chain. We evaluated their biological activities using the synthetic samples and found the novel inhibitory molecules with a simplified structure exhibit high inhibitory activities against byssus formation and low toxicities.

View Article and Find Full Text PDF

Data Checking of Asymmetric Catalysis Literature Using a Graph Neural Network Approach.

Molecules

January 2025

GSK Carbon Neutral Laboratories for Sustainable Chemistry, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK.

The range of chemical databases available has dramatically increased in recent years, but the reliability and quality of their data are often negatively affected by human-error fidelity. The size of chemical databases can make manual data curation/checking of such sets time consuming; thus, automated tools to help this process are highly desirable. Herein, we propose the use of Graph Neural Networks (GNNs) to identifying potential stereochemical misassignments in the primary asymmetric catalysis literature.

View Article and Find Full Text PDF

Background/objectives: The failure of physiological left-right (LR) patterning, a critical embryological process responsible for establishing the asymmetric positioning of internal organs, leads to a spectrum of congenital abnormalities characterized by laterality defects, collectively known as "heterotaxy". biallelic variants have recently been associated with heterotaxy syndrome and congenital heart defects (CHD). However, the genotype-phenotype correlations and the underlying pathogenic mechanisms remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!