AI Article Synopsis

  • The study presents the creation of four different ligands to enhance the biocompatibility and luminescence of quantum dots (QDs) and gold nanoparticles (AuNPs) by giving them a zwitterionic character.
  • These ligands are built on a bidentate dihydrolipoic acid (DHLA) anchor, allowing for strong attachment to nanoparticles, and include features that enable effective ionization and stability in various environments.
  • Tests showed that ligand-coated QDs can efficiently enter cells and remain biocompatible, suggesting that the developed ligands could greatly improve the application of nanoparticles in biomedical settings.

Article Abstract

We describe the synthesis of a series of four different ligands which are used to prepare hydrophilic, biocompatible luminescent quantum dots (QDs) and gold nanoparticles (AuNPs). Overall, the ligands are designed to be compact while still imparting a zwitterionic character to the NPs. Ligands are synthesized appended to a bidentate dihydrolipoic acid- (DHLA) anchor group, allowing for high-affinity NP attachment, and simultaneously incorporate tertiary amines along with carboxyl and/or hydroxyl groups. These are placed in close proximity within the ligand structure and their capacity for joint ionization imparts the requisite zwitterionic nature to the nanocrystal. QDs functionalized with the four different compact ligands were subjected to extensive physical characterization including surface charge, wettability, hydrodynamic size, and tolerance to a wide pH range or high salt concentration over time. The utility of the compact ligand coated QDs was further examined by testing of direct conjugation to polyhistidine-appended protein and peptides, aqueous covalent-coupling chemistry, and the ability to engage in Förster resonance energy transfer (FRET). Conjugating cell penetrating peptides to the compact ligand coated QD series facilitated their rapid and efficient cellular uptake, while subsequent cytotoxicity tests showed no apparent decreases in cell viability. In vivo biocompatibility was also demonstrated by microinjecting the compact ligand coated QDs into cells and monitoring their stability over time. Inherent benefits of the ligand design could be extended beyond QDs as AuNPs functionalized with the same compact ligand series showed similar colloidal properties. The strong potential of these ligands to expand NP capabilities in many biological applications is highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja201919sDOI Listing

Publication Analysis

Top Keywords

compact ligand
16
ligand coated
12
quantum dots
8
gold nanoparticles
8
functionalized compact
8
coated qds
8
ligands
6
compact
6
ligand
6
qds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!