AI Article Synopsis

  • The study investigates the reactions of 10 charged phenyl radicals with amino acids in a gas phase using advanced mass spectrometry techniques.
  • All radicals were found to abstract hydrogen atoms from amino acids, with the most electrophilic radicals also performing NH(2) abstraction, indicating two reaction pathways that are influenced by the radical's electron affinity.
  • Contrary to earlier beliefs, the reactivity was more dependent on the structure of the amino acids than the ionization energy, with unique reaction behaviors observed in proline and the influence of substituents on certain radicals.

Article Abstract

The reactivity of 10 charged phenyl radicals toward several amino acids was examined in the gas phase in a dual-cell Fourier transform ion cyclotron resonance mass spectrometer. All radicals abstract a hydrogen atom from the amino acids, as expected. The most electrophilic radicals (with the greatest calculated vertical electron affinities (EA) at the radical site) also react with these amino acids via NH(2) abstraction (a nonradical nucleophilic addition-elimination reaction). Both the radical (hydrogen atom abstraction) and nonradical (NH(2) abstraction) reaction efficiencies were found to increase with the electrophilicity (EA) of the radical. However, NH(2) abstraction is more strongly influenced by EA. In contrast to an earlier report, the ionization energies of the amino acids do not appear to play a general reactivity-controlling role. Studies using several partially deuterium-labeled amino acids revealed that abstraction of a hydrogen atom from the α-carbon is only preferred for glycine; for the other amino acids, a hydrogen atom is preferentially abstracted from the side chain. The electrophilicity of the radicals does not appear to have a major influence on the site from which the hydrogen atom is abstracted. Hence, the regioselectivity of hydrogen atom abstraction appears to be independent of the structure of the radical but dependent on the structure of the amino acid. Surprisingly, abstraction of two hydrogen atoms was observed for the N-(3-nitro-5-dehydrophenyl)pyridinium radical, indicating that substituents on the radical not only influence the EA of the radical but also can be involved in the reaction. In disagreement with an earlier report, proline was found to display several unprecedented reaction pathways that likely do not proceed via a radical mechanism but rather by a nucleophilic addition-elimination mechanism. Both NH(2) and (15)NH(2) groups were abstracted from lysine labeled with (15)N on the side chain, indicating that NH(2) abstraction occurs both from the amino terminus and from the side chain. Quantum chemical calculations were employed to obtain insights into some of the reaction mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131205PMC
http://dx.doi.org/10.1021/ja111280tDOI Listing

Publication Analysis

Top Keywords

amino acids
28
hydrogen atom
24
nh2 abstraction
16
side chain
12
amino
9
charged phenyl
8
phenyl radicals
8
radicals amino
8
fourier transform
8
transform ion
8

Similar Publications

Macrocyclization or stapling is an important strategy for increasing the conformational stability and target-binding affinity of peptides and proteins, especially in therapeutic contexts. Atomistic simulations of such stapled peptides and proteins could help rationalize existing experimental data and provide predictive tools for the design of new stapled peptides and proteins. Standard approaches exist for incorporating nonstandard amino acids and functional groups into the force fields required for MD simulations and have been used in the context of stapling for more than a decade.

View Article and Find Full Text PDF

Background And Objectives: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme that regulates folate and homocysteine metabolism. Genetic variation in has been implicated in cerebrovascular disease risk, although research in diverse populations is lacking. We thus aimed to investigate the effect of genetically predicted MTHFR activity on risk of ischemic stroke (IS) and its main subtypes using a multiancestry Mendelian randomization (MR) approach.

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

Examining the risk of delirium in patients hospitalized with COVID-19: Insights from the homeless population.

PLoS One

January 2025

Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States of America.

For patients hospitalized with COVID-19, delirium is a serious and under-recognized complication, and people experiencing homelessness (PEH) may be at greater risk. This retrospective cohort study compared delirium-associated risk factors and clinical outcomes between PEH and non-PEH. This study used patient records from 154 hospitals discharged from 2020-2021 from the Texas Inpatient Public Use Data file.

View Article and Find Full Text PDF

Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression.

PLoS One

January 2025

AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.

T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!