A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Yb valence states in YbC2: a HERFD-XANES spectroscopic investigation. | LitMetric

Yb valence states in YbC2: a HERFD-XANES spectroscopic investigation.

Inorg Chem

Department of Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany.

Published: June 2011

The valence state of Yb in YbC(2) was analyzed using high-energy-resolution fluorescence detection (HERFD) X-ray absorption near-edge structure (XANES) spectroscopy and time-of-flight neutron powder diffraction to clarify a controversy in the literature. The unit cell volume of YbC(2) suggests a mixed Yb valence, which was formerly determined to be 2.8 by magnetization measurements and paramagnetic neutron scattering techniques. However, the nature of the intermediate valence was not clearly established. Both homogeneous and heterogeneous mixed valences were assumed in different publications. The temperature-dependent behavior of the valence state was only predicted, albeit not explicitly studied. In this work, the valence state of Yb in YbC(2) is, therefore, investigated thoroughly by HERFD-XANES spectroscopy at low and high temperatures. Our measurements result in an average Yb valence of 2.81 that is temperature-independent from 15 to 1123 K. These findings are confirmed by neutron powder diffraction experiments, which reveal a constant C-C distance of 128.7(9) pm in a temperature range from 5 to 100 K. A significant temperature dependence of the Yb valence state in YbC(2) can, therefore, be excluded by our experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic200247zDOI Listing

Publication Analysis

Top Keywords

valence state
16
state ybc2
12
valence
8
neutron powder
8
powder diffraction
8
ybc2
5
valence states
4
states ybc2
4
ybc2 herfd-xanes
4
herfd-xanes spectroscopic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!