Control systems for lab on chip devices require careful characterisation and design for optimal performance. Traditionally, this involves either extremely computationally expensive simulations or lengthy iteration of laboratory experiments, prototype design, and manufacture. In this paper, an efficient control simulation technique, valid for typical microchannels, Computed Interpolated Flow Hydrodynamics (CIFH), is described that is over 500 times faster than conventional time integration techniques. CIFH is a hybrid approach, utilising a combination of pre-computed flows and hydrodynamic equations and allows the efficient simulation of dynamic control systems for the transport of cells through micro-fluidic devices. The speed-ups achieved by using pre-computed CFD solutions mapped to an n-dimensional control parameter space, significantly accelerate the evaluation and improvement of control strategies and chip design. Here, control strategies for a naturally unstable device geometry, the microfluidic cross-slot, have been simulated and optimal parameters have been found for proposed devices capable of trapping and sorting cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1lc20191c | DOI Listing |
EJNMMI Phys
January 2025
Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.
Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Health Policy and Management, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Family physician program is one of the effective reforms of the health system in Iran, but despite the implementation of this program in rural areas and the passage of ten years since its implementation in two provinces of Fars and Mazandaran, its implementation has faced problems. The aim of this study is to identify and prioritize implementation solutions related to the challenges of the family physician program in Iran.
Methods: This is a qualitative study using semi-structured interviews with 22 snowball-sampled experts and managers of basic health insurers to extract problems and executive solutions through coding and data analysis using Atlas Ti software and content analysis in the first stage.
BMC Public Health
January 2025
School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Qiaokou District, Wuhan City, 430030, China.
Objective: Understanding healthcare-seeking propensity is crucial for optimizing healthcare utilization, especially for patients with chronic conditions like hypertension or diabetes, given their substantial burden on healthcare systems globally. This study aims to evaluate hypertensive or diabetic patients' healthcare-seeking propensity based on the severity of symptoms, categorizing symptoms as either major or minor. It also explores factors influencing healthcare-seeking propensity and examines whether healthcare-seeking propensity affects healthcare utilization and preventable hospitalizations.
View Article and Find Full Text PDFOncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, KSA, Saudi Arabia.
In wind energy generation systems, ensuring high energy quality is critical but is often compromised due to the limited performance and durability of conventional regulators. To address this, this work presents a novel controller for managing the machine-side inverter of a single-rotor large wind turbine system using an induction machine-type generator. The proposed controller is designed using proportional, integral, and derivative error-based mechanisms, which fundamentally differ from traditional proportional-integral (PI) regulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!