Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Understanding the structure of complex networks is a continuing challenge, which calls for novel approaches and models to capture their structure and reveal the mechanisms that shape the networks. Although various topological measures, such as degree distributions or clustering coefficients, have been proposed to characterize network structure from many different angles, a comprehensive and intuitive representation of large networks that allows quantitative analysis is still difficult to achieve.
Methodology/principal Findings: Here we propose a mesoscopic description of large networks which associates networks of different structures with a set of particular curves, using breadth-first search. After deriving the expressions of the curves of the random graphs and a small-world-like network, we found that the curves possess a number of network properties together, including the size of the giant component and the local clustering. Besides, the curve can also be used to evaluate the fit of network models to real-world networks. We describe a simple evaluation method based on the curve and apply it to the Drosophila melanogaster protein interaction network. The evaluation method effectively identifies which model better reproduces the topology of the real network among the given models and help infer the underlying growth mechanisms of the Drosophila network.
Conclusions/significance: This curve-shaped description of large networks offers a wealth of possibilities to develop new approaches and applications including network characterization, comparison, classification, modeling and model evaluation, differing from using a large bag of topological measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096638 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019784 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!