Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Current models of breast cancer risk prediction do not directly reflect mammary estrogen metabolism or genetic variability in exposure to carcinogenic estrogen metabolites.
Methods: We developed a model that simulates the kinetic effect of genetic variants of the enzymes CYP1A1, CYP1B1, and COMT on the production of the main carcinogenic estrogen metabolite, 4-hydroxyestradiol (4-OHE(2)), expressed as area under the curve metric (4-OHE(2)-AUC). The model also incorporates phenotypic factors (age, body mass index, hormone replacement therapy, oral contraceptives, and family history), which plausibly influence estrogen metabolism and the production of 4-OHE(2). We applied the model to two independent, population-based breast cancer case-control groups, the German GENICA study (967 cases, 971 controls) and the Nashville Breast Cohort (NBC; 465 cases, 885 controls).
Results: In the GENICA study, premenopausal women at the 90th percentile of 4-OHE(2)-AUC among control subjects had a risk of breast cancer that was 2.30 times that of women at the 10th control 4-OHE(2)-AUC percentile (95% CI: 1.7-3.2, P = 2.9 × 10(-7)). This relative risk was 1.89 (95% CI: 1.5-2.4, P = 2.2 × 10(-8)) in postmenopausal women. In the NBC, this relative risk in postmenopausal women was 1.81 (95% CI: 1.3-2.6, P = 7.6 × 10(-4)), which increased to 1.83 (95% CI: 1.4-2.3, P = 9.5 × 10(-7)) when a history of proliferative breast disease was included in the model.
Conclusions: The model combines genotypic and phenotypic factors involved in carcinogenic estrogen metabolite production and cumulative estrogen exposure to predict breast cancer risk.
Impact: The estrogen carcinogenesis-based model has the potential to provide personalized risk estimates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472969 | PMC |
http://dx.doi.org/10.1158/1055-9965.EPI-11-0060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!