Solvent denaturation of proteins and interpretations of the m value.

Methods Enzymol

Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA.

Published: October 2011

The stability of globular proteins is important in medicine, proteomics, and basic research. The conformational stability of the folded state can be determined experimentally by analyzing urea, guanidinium chloride, and thermal denaturation curves. Solvent denaturation curves in particular may give useful information about a protein such as the existence of domains or the presence of stable folding intermediates. The linear extrapolation method (LEM) for analyzing solvent denaturation curves gives the parameter m, which is a measure of the dependence of ΔG on denaturant concentration. There is much recent interest in the m value as it relates to the change in accessible surface area of a protein when it unfolds and what it may reveal about the denatured states of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(09)66023-7DOI Listing

Publication Analysis

Top Keywords

solvent denaturation
12
denaturation curves
12
denaturation proteins
4
proteins interpretations
4
interpretations stability
4
stability globular
4
globular proteins
4
proteins medicine
4
medicine proteomics
4
proteomics basic
4

Similar Publications

Deep eutectic system enhanced oat protein extraction.

J Food Sci

January 2025

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.

Oats are a rich source of plant-based proteins owing to their nutritional value, diverse functions, and high abundance. However, traditional methods for extracting oat proteins (OPs), such as alkali solution acid precipitation (ASAP), can cause environmental pollution and potentially protein denaturation. In this work, we studied the use of deep eutectic solvents (DESs) and deep eutectic system (DESys)-based methods for OP extraction.

View Article and Find Full Text PDF

This article presents a new and facile method for the synthesis of Schiff base compounds with a benzimidazole group using a low-cost and reusable calcium aluminate nanophosphorus catalyst (CaAlO). This approach avoids harmful solvents and reactants, supporting a more environmentally friendly synthesis process. The catalyst maintained its activity and heterogeneity over four cycles with minimal loss of efficiency.

View Article and Find Full Text PDF

The present study aimed to evaluate the nutrition value, phytochemical content, and diverse pharmacological activities of different solvent extracts of L. fruit. Among all, the hydro-alcoholic extract showed high DPPH and ABTS radical scavenging activities with IC values of 82.

View Article and Find Full Text PDF

Polymeric micro- and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid-liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine-delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed.

View Article and Find Full Text PDF

The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!