A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamics and conformational change governing domain-domain interactions of calmodulin. | LitMetric

Thermodynamics and conformational change governing domain-domain interactions of calmodulin.

Methods Enzymol

Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Published: October 2011

Calmodulin (CaM) is a small (148 amino acid), ubiquitously expressed eukaryotic protein essential for Ca(2+) regulation and signaling. This highly acidic polypeptide (pI<4) has two homologous domains (N and C), each consisting of two EF-hand Ca(2+)-binding sites. Despite significant homology, the domains have intrinsic differences in their Ca(2+)-binding properties and separable roles in regulating physiological targets such as kinases and ion channels. In mammalian full-length CaM, sites III and IV in the C-domain bind Ca(2+) cooperatively with ~10-fold higher affinity than sites I and II in the N-domain. However, the difference is only twofold when CaM is severed at residue 75, indicating that anticooperative interactions occur in full-length CaM. The Ca(2+)-binding properties of sites I and II are regulated by several factors including the interplay of interdomain linker residues far from the binding sites. Our prior thermodynamic studies showed that these residues inhibit thermal denaturation and decrease calcium affinity. Based on high-resolution structures and NMR spectra, there appear to be interactions between charged residues in the sequence 75-80 and those near the amino terminus of CaM. To explore electrostatic contributions to interdomain interactions in CaM, KCl was used to perturb the Ca(2+)-binding affinity, thermal stability, and hydrodynamic size of a nested set of recombinant mammalian CaM (rCaM) fragments terminating at residues 75, 80, 85, or 90. Potassium chloride is known to decrease Ca(2+)-binding affinity of full-length CaM. It may act directly by competition with acidic side chains that chelate Ca(2+) in the binding sites, and indirectly elsewhere in the molecule by changing tertiary constraints and conformation. In all proteins studied, KCl decreased Ca(2+)-affinity, decreased Stokes radius, and increased thermal stability, but not monotonically. Crystallographic structures of Ca(2+)-saturated rCaM(1-75) (3B32.pdb) and rCaM(1-90) (3IFK.pdb) were determined, offering cautionary notes about the effect of packing interactions on flexible linkers. This chapter describes an array of methods for characterizing system-specific thermodynamic properties that in concert govern structure and function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(09)66021-3DOI Listing

Publication Analysis

Top Keywords

thermodynamics conformational
4
conformational change
4
change governing
4
governing domain-domain
4
domain-domain interactions
4
interactions calmodulin
4
calmodulin calmodulin
4
calmodulin cam
4
cam small
4
small 148
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!