A key for understanding how information is processed in the cortex is to unravel the dauntingly complex cortical neural circuitry. Recent technical innovations, in particular the in vivo whole-cell voltage-clamp recording techniques, make it possible to directly dissect the excitatory and inhibitory inputs underlying an individual cortical neuron's processing function. This method provides an essential complement to conventional approaches, with which the transfer functions of the neural system are derived by correlating neuronal spike outputs to sensory inputs. Here, we intend to introduce a potentially systematic strategy for resolving the structure of functional synaptic circuits. As complex circuits can be built upon elementary modules, the primary focus of this strategy is to identify elementary synaptic circuits and determine how these circuit units contribute to specific processing functions. This review will summarize recent studies on functional synaptic circuits in the primary auditory cortex, comment on existing experimental techniques for in vivo circuitry studies, and provide a perspective on immediate future directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184206 | PMC |
http://dx.doi.org/10.1016/j.neubiorev.2011.05.004 | DOI Listing |
eNeuro
January 2025
Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705
Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.
View Article and Find Full Text PDFCell Rep
January 2025
Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. Electronic address:
Development and maintenance of posture is essential behavior for overground mammalian locomotion. Dopamine and noradrenaline strongly influence locomotion, and their dysregulation initiates the development of motor impairments linked to neurodegenerative disease. However, the precise cellular and circuit mechanisms are not well defined.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yale University, New Haven, CT, USA.
Background: Advances in Alzheimer's disease (AD) have revealed a novel fluid biomarker, tau phosphorylated at T217 (pT217-tau), in CSF and plasma, that predicts AD prior to cognitive deficits. Understanding the role of pT217-tau is important in assessing efficacy of novel treatments aimed at early-stage disease. However, it is unknown why pT217-tau is effective in predicting brain pathology, as little is known about early, soluble pT217-tau brain expression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Janssen Research & Development, A Division of Janssen Pharmaceutica, Beerse, Belgium, Beerse, Belgium.
Background: Microglial cells have emerged as key players in the pathogenesis of Alzheimer's disease (AD). They act as a first line defense and fulfil a crucial role during brain development and circuit homeostasis. Microglia are involved in the removal of debris, control neural activity, regulate synaptic plasticity, and synapse pruning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!