Function of MRP1/ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts.

Biochem J

Department of Cell Biology, Section Membrane Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

Published: August 2011

MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly complete oxidation of free cholesterol in the plasma membrane of BHK-MRP1 (MRP1-expressing baby hamster kidney) cells did not affect MRP1 localization in lipid rafts or its efflux function, using 5-carboxyfluorescein diacetate as a substrate. Inhibition of cholesterol biosynthesis, using lovastatin in combination with RO 48-8071, an inhibitor of oxidosqualene cyclase, resulted in a shift of MRP1 out of lipid raft fractions, but did not affect MRP1-mediated efflux in Neuro-2a (neuroblastoma) cells. Short-term methyl-β-cyclodextrin treatment was equally effective in removing free cholesterol from Neuro-2a and BHK-MRP1 cells, but affected MRP1 function only in the latter. The kinetics of loss of both MRP1 efflux function and lipid raft association during long-term methyl-β-cyclodextrin treatment did not match the kinetics of free cholesterol removal in both cell lines. Moreover, MRP1 activity was measured in vesicles consisting of membranes isolated from BHK-MRP1 cells using the substrate cysteinyl leukotriene C4 and was not changed when the free cholesterol level of these membranes was either decreased or increased. In conclusion, MRP1 activity is not correlated with the level of free cholesterol or with localization in cholesterol-dependent lipid rafts.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20110427DOI Listing

Publication Analysis

Top Keywords

lipid rafts
20
free cholesterol
20
cholesterol
8
mrp1
8
mrp1 function
8
efflux function
8
lipid raft
8
methyl-β-cyclodextrin treatment
8
bhk-mrp1 cells
8
mrp1 activity
8

Similar Publications

The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

A study of the lipidome and proteome was performed on milk fat globule membranes (MFGM) originating from milk samples from high (HL) and low (LL) lipolysis groups of cows. Combined univariate and multivariate statistical analyses proposed a set of variables highly associated to contrasted samples with regard to milk lipolysis. Milk from HL group were related to 4 phosphatidylinositols, 8 phosphatidylcholines, 1 sphingomyelin and 27 proteins, among them the phosphatidylcholine/phosphatidylethanolamine ratio and ORM1 may contribute to the membrane remodeling of the MFGM.

View Article and Find Full Text PDF

As functional derivatives of mesenchymal stem cells (MSCs), small extracellular vesicles (sEVs) have garnered significant attention and application in regenerative medicine. However, the technical limitations for large-scale isolation of sEVs and their heterogeneous nature have added complexity to their applications. It remains unclear if the heterogeneous sEVs represent different aspects of MSCs functions.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!