Mesoporous materials have found a great number of important utilities due to their well-defined pore structure and high internal surface area, which are routinely synthesized with the assistance of block copolymers or templates. So far, a key challenge is how to assemble directly ligand-free inorganic nanocrystals into mesoporous structures, so that the high surface activity of ligand-free nanocrystals is not destroyed by further treatment to remove organic species or templates. In this paper, we report the direct assembly of highly uniform ZnO mesoporous ellipsoids from ligand-free ZnO nanocrystals of ∼5 nm. The size of the synthesized uniform ZnO mesoporous ellipsoids can be efficiently tuned from 132 × 75 to 190 × 111 nm (length × width), by varying the size and concentration of primary ZnO nanocrystal building blocks and the composition of the designed assembling solvent. The BET detection indicates that these ZnO mesoporous ellipsoids have high specific surface areas reaching to 136.57 m(2)/g, while their average BJH pore diameters are located at 8.8 nm. Especially, the high-resolution TEM images and XRD analysis revealed the occurrence of an oriented attachment mechanism in the assembly of uniform ZnO mesoporous ellipsoids, which supplied an important proof for the possibility of constructing stable three-dimensional structures by oriented attachment. The benefits of these ZnO mesoporous ellipsoids were demonstrated by their excellent photocatalytic activity under weak UV irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic2009013 | DOI Listing |
Chempluschem
January 2025
Universita degli Studi Di Cagliari, Chemical and Geological Science, S.S. 554 bivio per Sestu, 09042, Monserrato, ITALY.
This work deals with the design of nanocomposite hydrogenation-dehydration bifunctional catalysts for the one-pot conversion of CO2 to dimethyl ether (DME), focusing on obtaining a high and homogeneous dispersion of a Cu-based CO2 hydrogenation phase into the pores of mesostructured supports. Particularly, three aluminosilicate mesostructured acid catalysts with catalytic activity towards methanol dehydration and featuring different porous structures (Al-MCM-41, Al-SBA-15, Al-SBA-16) were synthesized and used as supports to host a CuO/ZnO/ZrO2 (CZZ) CO2 hydrogenation catalyst for methanol synthesis. The use of a mesostructured support allows to maximize the exposed surface of the CO2 reduction function by nanostructuring it through its confinement within the mesochannels, thus obtaining nanocomposite bifunctional catalysts with an ultra-small hydrogenation nanophase.
View Article and Find Full Text PDFTalanta
April 2025
School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China. Electronic address:
The growing modern industry has promoted the development of gas sensors for environmental monitoring and safety checks. However, the traditional chemical resistance gas sensor still has some disadvantages such as high power consumption and limited detection, mainly due to the lack of charge transfer ability of sensing materials. In this paper, an ordered UV-activated gas sensor with mesoporous ZnO/TiO nanotube composite was prepared by precisely controlling the growth of ZnO on the inner wall of TiO nanotube.
View Article and Find Full Text PDFChem Sci
January 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44 (0)1865 272686.
We report a new synthetic strategy for preparing well-organised, spherical and mesoporous, mixed-metal, hollow-core@layered double hydroxides. Hollow-SiO@Cu Zn Mg Al-LDHs ( + + = 2.32 ± 0.
View Article and Find Full Text PDFBiomacromolecules
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China.
Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections.
View Article and Find Full Text PDFInorg Chem
October 2024
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!