The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

Download full-text PDF

Source
http://dx.doi.org/10.1890/10-0822.1DOI Listing

Publication Analysis

Top Keywords

tundra ecosystem
8
co2 uptake
8
ecosystem
7
arctic
5
sphagnum
5
light-stress avoidance
4
avoidance mechanisms
4
mechanisms sphagnum-dominated
4
sphagnum-dominated wet
4
wet coastal
4

Similar Publications

Potential risks of bacterial plant pathogens from thawing permafrost in the Alaskan tundra.

Ecotoxicol Environ Saf

December 2024

Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea. Electronic address:

Global warming-induced permafrost thawing raises concerns about the release of dormant microbes, including potentially harmful plant pathogens. However, the potential pathogenic risks associated with the thawing of permafrost remain poorly understood. Here, we conducted a 90-day soil incubation experiment at 4 °C to mimic extended permafrost thawing in Alaskan tundra soils stratified into active (A), transitional (T), and permanently frozen (P) layers.

View Article and Find Full Text PDF

Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO fluxes in three tundra habitats varying in soil moisture and plant-community composition.

View Article and Find Full Text PDF

A new soil-dwelling mite species, Zerconopsis sibiricus sp. nov., is described from Russia based on the females, males, and nymphs.

View Article and Find Full Text PDF

Land cover change and its driving factors in Siberia from 1992 to 2020.

Environ Monit Assess

December 2024

School of Environmental and Municipal Engineering, Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou Jiaotong University, Lanzhou, 730070, China.

Siberia occupies vast areas underlain by permafrost, and understanding its land cover changes is important for ecological environmental protection in a warming climate. Based on the land cover and climate datasets, we analyzed the land cover changes and their drivers in Siberia from 1992 to 2020. The results show that ① From 1992 to 2020, the areas of evergreen needleleaf trees and deciduous needleleaf trees in Siberia decreased by 9% and 2.

View Article and Find Full Text PDF

Background: Access to salmon resources is vital to coastal brown bear (Ursus arctos) populations. Deciphering patterns of travel allowing coastal brown bears to exploit salmon resources dispersed across the landscape is critical to understanding their behavioral ecology, maintaining landscape connectivity for the species, and developing conservation strategies.

Methods: We modeled travel behavior of 51 radio-collared female Kodiak brown bears (U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!