A combined spectroscopic and ab initio theoretical study of the doubly hydrogen-bonded complex of 2-pyridone (2PY) with NH(3) has been performed. The S(1)←S(0) spectrum extends up to ≈1200 cm(-1) above the 0(0) (0) band, close to twice the range observed for 2PY. The S(1) state nonradiative decay for vibrations above ≈300 cm(-1) in the NH(3) complex is dramatically slowed down relative to bare 2PY. Also, the Δv=2, 4,… overtone bands of the ν(1) ' and ν(2) ' out-of-plane vibrations that dominate the low-energy spectral region of 2PY are much weaker or missing for 2PY⋅NH3, which implies that the bridging (2PY)NH⋅⋅⋅NH(3) and H(2) NH⋅⋅⋅O=C H-bonds clamp the 2PY at a planar geometry in the S(1) state. The mass-resolved UV vibronic spectra of jet-cooled 2PY⋅NH(3) and its H/D mixed isotopomers are measured using two-color resonant two-photon ionization spectroscopy. The S(0) and S(1) equilibrium structures and normal-mode frequencies are calculated by density functional (B3LYP) and correlated ab initio methods (MP2 and approximate second-order coupled-cluster, CC2). The S(1)←S(0) vibronic assignments are based on configuration interaction singles (CIS) and CC2 calculations. A doubly H-bonded bridged structure of C(S) symmetry is predicted, in agreement with that of Held and Pratt [J. Am. Chem. Soc. 1993, 115, 9718]. While the B3LYP and MP2 calculated rotational constants are in very good agreement with experiment, the calculated H(2) NH⋅⋅⋅O=C H-bond distance is ≈0.7 Å shorter than that derived by Held and Pratt. On the other hand, this underlines their observation that ammonia can act as a strong H-bond donor when built into an H-bonded bridge. The CC2 calculations predict the H(2) NH⋅⋅⋅O distance to increase by 0.2 Å upon S(1)←S(0) electronic excitation, while the (2PY)NH⋅⋅⋅NH(3) H-bond remains nearly unchanged. Thus, the expansion of the doubly H-bonded bridge in the excited state is asymmetric and almost wholly due to the weakening of the interaction of ammonia with the keto acceptor group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201100037 | DOI Listing |
Molecules
November 2024
Institute of Physics, University of Rzeszów, 35-310 Rzeszów, Poland.
The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA towards the geometry of the S state. We employ both the correlated ab initio methods (approximate Coupled Clusters Singles and Doubles-CC2 and CASSCF/NEVPT2) as well as the DFT/TDDFT calculations with two exchange-correlation functionals, i.e.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Fachrichtung Chemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany.
For the interpretation of spectra of magnetic stellar objects such as magnetic white dwarfs (WDs), highly accurate quantum chemical predictions for atoms and molecules in finite magnetic field are required. Especially the accurate description of electronically excited states and their properties requires established methods such as those from coupled-cluster (CC) theory. However, respective calculations are computationally challenging even for medium-sized systems.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2024
Otto Schott Institute of Materials Research, Friedrich Schiller Unversity Jena, Löbdergraben 32, 07743 Jena, Germany.
This work presents a density functional theory (DFT)-based embedding technique for the calculation of optical gaps in ionic solids. The approach partitions the supercell of the ionic solid and embeds a small molecule-like cluster in a periodic environment using a cluster-in-periodic embedding method. The environment is treated with DFT, and its influence on the cluster is captured by a DFT-based embedding potential.
View Article and Find Full Text PDFJ Phys Chem A
October 2024
Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang, 310024, China.
An implementation of stochastic resolution of identity to the CC2 (sRI-CC2) ground state energy followed by triplet excitation energy calculations is presented. A set of stochastic orbitals is introduced to further decouple the expensive 4-index electron repulsion integrals on the basis of RI approximation. A Laplace transformation of the orbital energy difference denominators into numerical summations is adopted to obtain a third-order overall scaling.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2024
Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
We present a large dataset of highly accurate two-photon transition strengths (δ) determined for standard small molecules. Our reference values have been calculated using the quadratic response implementation of the third-order coupled cluster method including iterative triples (Q-CC3). The aug-cc-pVTZ atomic basis set is used for molecules with up to five non-hydrogen atoms, while larger molecules are assessed with aug-cc-pVDZ; the differences due to the basis sets are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!