Prion protein (PrP(C) ), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C) -STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+) ) and PrP(C) -null (Prnp(0/0) ) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C) , with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.664 | DOI Listing |
Mol Clin Oncol
February 2025
Department of Biological Sciences, Tennessee State University, Nashville, TN 37066, USA.
Microtubule actin crosslinking factor 1 (MACF1), is a cytoskeletal protein that functions as a crosslinker between microtubules and actin filaments, with early studies expanding the role of this spectraplakin protein to the central nervous system and Wnt signaling. In the early 2000's, genetic alterations of MACF1 were identified in several cancers suggesting that this cytoskeletal crosslinker was involved in tumor development and progression, while preclinical studies provided evidence that MACF1 is a potential diagnostic and prognostic biomarker and therapeutic target in glioblastomas, a central nervous system cancer derived from astrocytes and neural progenitor stem cells. Furthermore, investigations in glioblastomas demonstrated that genetic inhibitory targeting of this spectraplakin protein alone and in combination with DNA damaging agents had synergistic antitumorigenic effects.
View Article and Find Full Text PDFSevere spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI.
View Article and Find Full Text PDFFront Cell Neurosci
December 2023
Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
The tropomyosin receptor kinase B (TrkB) is encoded by the gene. It belongs to the family of transmembrane tyrosine kinases, which have key roles in the development and maintenance of the nervous system. Brain-derived neurotrophic factor (BDNF) and the neurotrophins NT3 and NT4/5 have high affinity for TrkB.
View Article and Find Full Text PDFToxics
July 2023
Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
Arsenic exposure during embryogenesis can lead to improper neurodevelopment and changes in locomotor activity. Additionally, in vitro studies have shown that arsenic inhibits the differentiation of sensory neurons and skeletal muscle. In the current study, human-induced pluripotent stem (iPS) cells were differentiated into motor neurons over 28 days, while being exposed to up to 0.
View Article and Find Full Text PDFMol Biol Rep
October 2023
Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: The presence of neural precursor stem cells (NPSCs) in some parts of the adult brain and the potency of these types of cells with a therapeutic viewpoint, has opened up a new approach for the treatment and recovery of the defects of central nervous system (CNS). Quercetin, as an herbal flavonoid, has been extensively investigated and shown to have numerous restoratives, inhibitory, and protective effects on some cell-lines and disorders. The purpose of this study is to simultaneously investigate the effect of quercetin on the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene and the effect on the proliferation and differentiation of NPSCs derived from the subventricular zone (SVZ) of the brain of adult rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!