Introduction: In this study we report a novel mutation in the gap junction protein beta 1 (GJB1) gene of a Chinese X-linked Charcot-Marie-Tooth disease (CMTX1) family, which has specific electrophysiological characteristics.
Methods: Twenty members in the family were studied by clinical neurological examination and GJB1 gene mutation analysis, and 3 patients were studied electrophysiologically. The proband and his mother also underwent sural nerve biopsy.
Results: All patients have the CMT phenotype, except for 2 asymptomatic carriers. Electrophysiological examinations showed non-uniform slowing of motor conduction velocities and partial motor conduction blocks and temporal dispersion. Sural nerve biopsy confirmed a predominantly demyelinating neuropathy, and an Asn2Lys mutation in the amino-terminal domain was found in 9 members of this family, but not in 25 normal controls in the family.
Conclusions: This family represents a novel mutation in the GJB1 form of CMTX1. The mutation in the amino-terminus has an impact on the electrophysiological characteristics of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.21992 | DOI Listing |
Sci Rep
January 2025
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.
The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.
View Article and Find Full Text PDFAnterior segment dysgenesis (ASD) defines a collection of congenital eye disorders that affect structures within the anterior segment of the eye. Mutations in genes that initiate and regulate the complex pathways involved in eye development can cause a spectrum of disorders such as ASD, congenital cataracts and corneal opacity. In South Africa, causes of ASD are poorly understood with few studies looking at the possible genetic basis for these disorders.
View Article and Find Full Text PDFHamostaseologie
January 2025
Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany.
In this article, our goal is to offer an introduction and overview of the diagnostic approach to inherited platelet function defects (iPFDs) for clinicians and laboratory personnel who are beginning to engage in the field. We describe the most commonly used laboratory methods and propose a diagnostic four-step approach, wherein each stage requires a higher level of expertise and more specialized methods. It should be noted that our proposed approach differs from the ISTH Guidance on this topic in some points.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India. Electronic address:
ROS (Reactive Oxygen Species) has a dual role in tumorigenesis. Some cancers have high ROS conditions, and others have low ROS. TNBC thrives on high ROS compared to other Breast Cancer subtypes.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!