Iron limitation has a strong impact on electron transport reactions of the unicellular fresh water cyanobacterium Synechococcus elongatus PCC 7942 (thereafter referred to as S. elongatus). Among the various adaptational processes on different cellular levels, iron limitation induces a strongly enhanced expression of IdiC (iron-deficiency-induced protein C). In this article, we show that IdiC is loosely attached to the thylakoid and to the cytoplasmic membranes and that its expression is enhanced during conditions of iron starvation and during the late growth phase. The intracellular IdiC level was even more increased when additional iron was replenished in the late growth phase. On the basis of its amino acid sequence and of its absorbance spectrum, IdiC can be classified as a member of the family of thioredoxin (TRX)-like (2Fe-2S) ferredoxins. The presence of an iron cofactor in IdiC was detected by inductive coupled plasma optical emission spectrometry (ICP-OES). Comparative measurements of electron transport activities of S. elongatus wild type (WT) and an IdiC-merodiploid mutant called MuD, which contained a strongly reduced IdiC content under iron-sufficient as well as iron-deficient growth conditions, were performed. The results revealed that MuD had a strongly increased light sensitivity, especially under iron limitation. The measurements of photosystem II (PS II)-mediated electron transport rates in WT and MuD strain showed that PS II activity was significantly lower in MuD than in the WT strain. Moreover, P(700) (+) re-reduction rates provided evidence that the respiratory activities, which were very low in the MuD strain in the presence of iron, significantly increased in iron-starved cells. Thus, an increase in respiration may compensate for the drastic decrease of photosynthetic electron transport activity in MuD grown under iron starvation. Based on the similarity of the S. elongatus IdiC to the NuoE subunit of the NDH-1 complex in Escherichia coli, it is likely that IdiC has a function in the electron transport processes from NAD(P)H to the plastoquinone pool. This is in agreement with the up-regulation of IdiC in the late growth phase as well as under stress conditions when PS II is damaged. As absence or high reduction of the IdiC level would prevent or reduce the formation of functional NDH-1 complexes, under such conditions electron transport routes via alternative substrate dehydrogenases, donating electrons to the plastoquinone pool, can be assumed to be up-regulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-011-9661-1 | DOI Listing |
Sci Rep
January 2025
College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, Xinjiang, China.
We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, South Korea. Electronic address:
Phosphine (PH) fumigation is widely used to control insect pests in stored products globally. However, intensive PH use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS.
View Article and Find Full Text PDFTalanta
January 2025
The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
Epinephrine (Ep) is an important neurotransmitter, which plays an important role in the nervous system and glycogen metabolism of living organisms. Hence, a novel NCQDs/FeCoFe-PBA composite with FeCoFe-Prussian blue analogues (PBA) as the core and nitrogen-doped carbon quantum dots (NCQDs) as the shell was constructed by a one-pot hydrothermal method, and it was used for the efficient detection of Ep. As a good electroactive material, NCQDs in the composite not only improved the weak conductivity of FeCoFe-PBA, but also limited the self-aggregation of FeCoFe-PBA, and formed a uniform shell on FeCoFe-PBA.
View Article and Find Full Text PDFBiomaterials
December 2024
Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany. Electronic address:
Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!