A delafossite-based copper catalyst for sustainable Cl2 production by HCl oxidation.

Chem Commun (Camb)

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E 125, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.

Published: July 2011

A copper catalyst based on a delafossite precursor (CuAlO(2)) displays high activity and extraordinary lifetime in the gas-phase oxidation of HCl to Cl(2), representing a cost-effective alternative to RuO(2)-based catalysts for chlorine recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cc11891aDOI Listing

Publication Analysis

Top Keywords

copper catalyst
8
delafossite-based copper
4
catalyst sustainable
4
sustainable cl2
4
cl2 production
4
production hcl
4
hcl oxidation
4
oxidation copper
4
catalyst based
4
based delafossite
4

Similar Publications

Determination of hydrogen peroxide (HO) is of great importance in many systems for controlling the quality of products, food safety, and medical diagnostics. In this work, a highly sensitive photoluminescence film sensor was synthesized based on chitosan (CS), polyvinyl alcohol (PVA), and terephthalic acid (TPA), in the presence of copper (II) ions for determination of hydrogen peroxide. TPA was used as a sensitive probe for detection of hydroxyl radicals produced in a photo-Fenton-like process.

View Article and Find Full Text PDF

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-CuO/g-CN, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-CN nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of CuO, the high stability of g-CN, and the surface plasmon resonance (SPR) effect of Cu nanoparticles.

View Article and Find Full Text PDF

A three-component cascade boronation-dearomatization reaction of alkenes, a diboron compound, and a pyridinium salt is diclosed, affording chiral boron-containing 1,4-dihyropyridines in high yields (≤98%) and diastereoselectivity (≤10:1 dr), along with excellent enantioselectivity (typically >99% ee). The catalytic system performs efficiently at low catalyst loadings (1 mol %) and was tested with >50 examples, including some biologically active molecules.

View Article and Find Full Text PDF

Diastereoselective Construction of Bridged Azabicyclo[3.2.1]octane via Copper-Catalyzed Formal [4 + 3] Cycloaddition.

J Org Chem

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China.

A novel copper-catalyzed formal diastereoselective [4 + 3] cycloaddition of 2-arylaziridines and 2-substituted cyclopentadiene was developed. This transformation provided an efficient protocol for the assembly of a highly strained bridged azabicyclo[3.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!