Background: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an autosomal dominant inherited disease with incomplete penetrance and variable expression. Causative mutations in genes encoding 5 desmosomal proteins are found in ≈50% of ARVD/C index patients. Previous genotype-phenotype relation studies involved mainly overt ARVD/C index patients, so follow-up data on relatives are scarce.

Methods And Results: One hundred forty-nine ARVD/C index patients (111 male patients; age, 49±13 years) according to 2010 Task Force criteria and 302 relatives from 93 families (282 asymptomatic; 135 male patients; age, 44±13 years) were clinically and genetically characterized. DNA analysis comprised sequencing of plakophilin-2 (PKP2), desmocollin-2, desmoglein-2, desmoplakin, and plakoglobin and multiplex ligation-dependent probe amplification to identify large deletions in PKP2. Pathogenic mutations were found in 87 index patients (58%), mainly truncating PKP2 mutations, including 3 cases with multiple mutations. Multiplex ligation-dependent probe amplification revealed 3 PKP2 exon deletions. ARVD/C was diagnosed in 31% of initially asymptomatic mutation-carrying relatives and 5% of initially asymptomatic relatives of index patients without mutation. Prolonged terminal activation duration was observed more than negative T waves in V(1) to V(3), especially in mutation-carrying relatives <20 years of age. In 45% of screened families, ≥1 affected relatives were identified (90% with mutations).

Conclusions: Pathogenic desmosomal gene mutations, mainly truncating PKP2 mutations, underlie ARVD/C in the majority (58%) of Dutch index patients and even 90% of familial cases. Additional multiplex ligation-dependent probe amplification analysis contributed to discovering pathogenic mutations underlying ARVD/C. Discovering pathogenic mutations in index patients enables those relatives who have a 6-fold increased risk of ARVD/C diagnosis to be identified. Prolonged terminal activation duration seems to be a first sign of ARVD/C in young asymptomatic relatives.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.988287DOI Listing

Publication Analysis

Top Keywords

arrhythmogenic ventricular
12
ventricular dysplasia/cardiomyopathy
12
arvd/c patients
12
male patients
8
patients age
8
multiplex ligation-dependent
8
ligation-dependent probe
8
probe amplification
8
initially asymptomatic
8
mutation-carrying relatives
8

Similar Publications

The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF).

View Article and Find Full Text PDF

The impact of obesity on heart rate variability (HRV) and ventricular repolarization, both vital indicators of cardiovascular health, is the focus of this review. Obesity, measured by BMI, waist circumference, and waist-to-hip ratio, significantly increases cardiovascular disease (CVD) risk due to structural and autonomic heart changes. Findings show that obese individuals exhibit prolonged QT and Tpeak-to-Tend (Tpe) intervals, suggesting delayed ventricular recovery and greater arrhythmia risk.

View Article and Find Full Text PDF

Aims: Ventricular arrhythmias (VAs), which can lead to sudden cardiac death, are the primary cause of mortality in patients with heart failure (HF). However, the precise mechanisms underlying these arrhythmias are not well understood. Recent studies have implicated tumor necrosis factor alpha-induced protein 3-interacting protein 3 (TNIP3) in pathological cardiac hypertrophy.

View Article and Find Full Text PDF

Locoregional anesthesia in patients with Brugada syndrome. A retrospective database analysis.

Acta Anaesthesiol Scand

February 2025

Department of Anesthesiology and perioperative medicine, University Hospital of Brussels, Free University of Brussels, Brussels, Belgium.

Background: The use of local anesthetics (LA) in individuals with Brugada syndrome (BrS) remains a subject of debate due to the lack of large-scale studies confirming their potential risks. This study primarily aimed to evaluate the incidence of new malignant arrhythmias or defibrillation events in patients diagnosed with BrS during the perioperative period, following the administration of local anesthetics, and within 30 days postoperatively. The secondary objective was to analyze the occurrence of adverse effects during hospitalization, as well as 30-day readmission and mortality rates.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!