Background: To date, multiple myeloma remains an incurable malignancy due to the persistence of minimal residual disease in the bone marrow. In this setting, monoclonal antibodies against myeloma-specific cell surface antigens represent a promising therapeutic approach, which is however hampered by a lack of appropriate target structures expressed across all pathogenic myeloma cell populations. We, therefore, investigated functionally relevant immunoreceptors specifically associated with myeloma cells as well as their clonogenic precursors.
Design And Methods: Potential target proteins were identified using antibody arrays against phosphorylated immunoreceptors with lysates from myeloma cell lines. CD229 expression was confirmed in primary myeloma cells by reverse transcriptase polymerase chain reaction, western blot, fluorescence-activated cell sorting, and immunohistochemistry. Apoptosis, clonogenic growth, and sensitivity to chemotherapy were determined following short-interfering RNA-mediated downregulation of CD229. Antibody-dependent cellular and complement-dependent cytotoxicity were analyzed using a monoclonal antibody against CD229 to demonstrate the antigen's immunotherapeutic potential.
Results: Our screening assay identified CD229 as the most strongly over-expressed/phosphorylated immunoreceptor in myeloma cell lines. Over-expression was further demonstrated in the CD138-negative population, which has been suggested to represent myeloma precursors, as well as on primary tumor cells from myeloma patients. Accordingly, CD229 staining of patients' bone marrow samples enabled the identification of myeloma cells by flow cytometry and immunohistochemistry. Down-regulation of CD229 led to a decreased number of viable myeloma cells and clonal myeloma colonies, and enhanced the anti-tumor activity of conventional chemotherapeutics. Targeting CD229 with a monoclonal antibody resulted in complement- and cell-mediated lysis of myeloma cells.
Conclusions: Our results demonstrate that the immunoreceptor CD229 is specifically over-expressed on myeloma cells including their clonogenic precursors and contributes to their malignant phenotype. Monoclonal antibodies against this protein may represent a promising diagnostic and immunotherapeutic instrument in this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186313 | PMC |
http://dx.doi.org/10.3324/haematol.2010.036814 | DOI Listing |
Nat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan Province, People's Republic of China. Electronic address:
Chimeric antigen receptor T (CAR-T) cell therapy targeting B cell mature antigen (BCMA) has shown remarkable clinical benefits in treating multiple myeloma (MM). Bortezomib, a proteasome inhibitor approved as a first-line agent for MM for two decades, has demonstrated potent antitumor activity. In this study, we found that bortezomib treatment stabilizes the expression of BCMA and conceived the hypothesis that BCMA CAR-T therapy combined with bortezomib would enhance the anti-MM efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.
Methylenebisphosphonic derivatives including hydroxy-methylenebisphosphonic species may be of potential biological activity, and a part of them is used in the treatment of bone diseases. Methylenebisphosphonates may be obtained by the Michaelis-Arbuzov reaction of suitably α-substituted methylphosphonates and trialkyl phosphites or phosphinous esters, while the hydroxy-methylene variations are prepared by the Pudovik reaction of α-oxophosphonates and different >P(O)H reagents, such as diethyl phosphite and diarylphosphine oxides. After converting α-hydroxy-benzylphosphonates and -phosphine oxides to the α-halogeno- and α-sulfonyloxy derivatives, they were utilized in the Michaelis-Arbuzov reaction with trialkyl phosphites and ethyl diphenylphosphinite to afford the corresponding bisphosphonate, bis(phosphine oxide) and phosphonate-phosphine oxide derivatives.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Hematology, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece.
Multiple Myeloma (MM) is a complex hematological malignancy characterized by the clonal proliferation of malignant plasma cells within bone marrow (BM) [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!