The dentate gyrus of the hippocampus is thought to control information flow into the rest of the hippocampus. Under pathological conditions, such as epilepsy, this protective feature is circumvented and uninhibited activity flows throughout the hippocampus. Many factors can modulate excitability of the dentate gyrus and ultimately, the hippocampus. It is therefore of critical importance to understand the mechanisms involved in regulating excitability in the dentate gyrus. Dynorphin, the endogenous ligand for the kappa (κ) opioid receptor (KOR), is thought to be involved in neuromodulation in the dentate gyrus. Both dynorphin and its receptor are widely expressed in the dentate gyrus and have been implicated in epilepsy and other complex behaviours such as stress-induced deficits in learning and stress-induced depression-like behaviours. Administration of KOR agonists can prevent both the behavioural and electroencephalographic measures of seizures in several different models of epilepsy. Antagonism of the KORs also prevents stress-induced behaviours. This evidence suggests the KORs as possible therapeutic targets for various pathological conditions. In addition, KOR agonists prevent the induction of LTP. Although there are several mechanisms through which dynorphin could mediate these effects, no studies to date investigated the effects of KOR activation on intrinsic membrane properties and cell excitability. We used whole-cell, patch-clamp recordings from acute mouse hippocampus slices to investigate the effect of KOR activation on dentate gyrus granule cell excitability. The agonist U69,593 (U6, 1 μM) resulted in a lower spike threshold, a decreased latency to first spike, an increased spike half-width, and an overall increase in spike number with current injections ranging from 15 to 45 pA. There was also a reduction in the interspike interval (ISI) both early and late in the spike train, with no change in membrane potential or input resistance. Preincubation of the slice with the selective KOR antagonist, nor-binalthorphimine (BNI, 1 μM) inhibited the effect of U6 on the latency to first spike and spike half-width suggesting that these effects are mediated through KORs. The inclusion of GDP-βS (1 mM) in the recording pipette prevented all of the U6 effects, suggesting that all effects are mediated via a G-protein-dependent mechanism. Inclusion of the A-type K+ current blocker, 4-aminopyridine (4-AP, 5 mM) in the pipette also antagonised the effects of U6. Kv4.2 is one of the channel α subunits thought to be responsible for carrying the A-type K+ current. Incubation of hippocampus slices with U6 resulted in a decrease in the Kv4.2 subunit protein at the cell surface. These results are consistent with an increase in cell excitability in response to KOR activation and may reflect new possibilities for additional opioid functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167115 | PMC |
http://dx.doi.org/10.1113/jphysiol.2011.211623 | DOI Listing |
J Neurosci
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.
For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
January 2025
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York.
Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.
Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.
Hippocampus
January 2025
Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Saint Petersburg, Russia.
Accumulating evidence indicates that inherited astrocyte dysfunction can be a primary trigger for epilepsy development; however, the available data are rather limited. In addition, astrocytes are considered as a perspective target for the design of novel and improvement of the existing antiepileptic therapy. Piracetam and related nootropic drugs are widely used in the therapy of various epileptic disorders, but detailed mechanisms of racetams action and, in particular, their effects on glial functions are poorly understood.
View Article and Find Full Text PDFMol Med
December 2024
Department of Experimental Medical Science, Lund University, Lund, Sweden.
In the mammalian brain, new neurons continue to be generated throughout life in a process known as adult neurogenesis. The role of adult-generated neurons has been broadly studied across laboratories, and mounting evidence suggests a strong link to the HPA axis and concomitant dysregulations in patients diagnosed with mood disorders. Psychedelic compounds, such as phenethylamines, tryptamines, cannabinoids, and a variety of ever-growing chemical categories, have emerged as therapeutic options for neuropsychiatric disorders, while numerous reports link their effects to increased adult neurogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!