Pharmacological interventions for spinal cord injury: where do we stand? How might we step forward?

Pharmacol Ther

Spinal Cord & Brain injury Research Center, Lexington, University of Kentucky, KY 40536-0509, USA.

Published: October 2011

Despite numerous studies reporting some measures of efficacy in the animal literature, there are currently no effective therapies for the treatment of traumatic spinal cord injuries (SCI) in humans. The purpose of this review is to delineate key pathophysiological processes that contribute to neurological deficits after SCI, as well as to describe examples of pharmacological approaches that are currently being tested in clinical trials, or nearing clinical translation, for the therapeutic management of SCI. In particular, we will describe the mechanistic rationale to promote neuroprotection and/or functional recovery based on theoretical, yet targeted pathological events. Finally, we will consider the clinical relevancy for emerging evidence that pharmacologically targeting mitochondrial dysfunction following injury may hold the greatest potential for increasing tissue sparing and, consequently, the extent of functional recovery following traumatic SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2011.05.001DOI Listing

Publication Analysis

Top Keywords

spinal cord
8
functional recovery
8
pharmacological interventions
4
interventions spinal
4
cord injury
4
injury stand?
4
stand? step
4
step forward?
4
forward? despite
4
despite numerous
4

Similar Publications

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.

Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).

View Article and Find Full Text PDF

The Sir Ludwig Guttmann lecture 2023: psychosocial factors and adjustment dynamics after spinal cord injury.

Spinal Cord

January 2025

Rehabilitation Studies, Faculty of Medicine and Health, The University of Sydney, The Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.

Study Design: Narrative review OBJECTIVES: Sir Ludwig Guttmann realised spinal cord injury (SCI) rehabilitation should incorporate more than a biomedical approach if SCI patients were to adjust to their injury and achieve productive social re-integration. He introduced components into rehabilitation he believed would assist his patients build physical strength as well as psychological resilience that would help them re-engage with their communities. We pay tribute to Sir Ludwig by presenting research that has focussed on psychosocial factors that contribute to adjustment dynamics after SCI.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!