The tumor suppressor protein p53, often called the guardian of the genome, is involved in important cellular processes, such as cell cycle control, apoptosis and DNA repair. With respect to BER, p53 might physically interact with and affect the transcription of different BER proteins such as hOGG1, APE1 or Polβ. In studies in HCT116 p53(-/-) cells previously published, activity and mRNA expression of hOGG1 were found to be significantly decreased, while down-regulation of APE1 mRNA and protein levels in response to genotoxic stress were only described in HCT116 p53(+/+) cells, but not in the isogenic p53 knockout cell line. The predominantly indirect genotoxic carcinogen cadmium inhibits the BER pathway and potentially interferes with zinc binding proteins such as p53. Therefore, this study was accomplished to investigate whether p53 is involved in the cadmium-induced inhibition of BER activity. To address this issue we applied a non-radioactive cleavage test system based on a Cy5-labeled oligonucleotide. We present evidence that p53 is not essential for hOGG1 and APE1 gene expression as well as OGG and APE activity in unstressed HCT116 cells; however, it plays an important role in the cellular response to cadmium treatment. Here, a direct involvement of p53 was only observed with respect to APE1 gene expression contributing to an altered APE activity, while OGG activity was presumably affected indirectly due to a stronger accumulation of cadmium in HCT116 p53(+/+) cells. In summary, p53 indeed affects the BER pathway directly and indirectly in response to cadmium treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrfmmm.2011.05.006 | DOI Listing |
Asian Pac J Cancer Prev
December 2024
Department of Oncology, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
Background: Systemic chemotherapy constitutes an indispensable component of breast cancer (BC) management, where therapeutic drug combinations such as anthracyclines, platinum compounds, and taxanes form the cornerstone of standard treatment protocols. Although DNA repair genes are pivotal in cancer susceptibility, their specific roles in mediating acute or chronic toxicity outcomes induced by chemotherapy remain undetermined. Consequently, this study was planned to elucidate the impact of polymorphisms in base excision repair (BER) genes, including XRCC1, XRCC2, XRCC3, APE1, and hOGG1, on treatment response and toxicity outcomes in BC patients undergoing paclitaxel and doxorubicin-based chemotherapy within an Indian population.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
August 2024
Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
Background: Radiotherapy (RT) is a crucial treatment for head and neck cancer however, it causes adverse reactions to the normal tissue and organs adjacent to target tumor. The present study was carried out to investigate possible association of single nucleotide polymorphism in DNA repair genes with toxicity effects of radiotherapy on normal tissue.
Methods: Three hundred and fifty head and neck cancer patients receiving radiotherapy treatment were enrolled in this study.
Asian Pac J Cancer Prev
April 2022
Department of Molecular Biology, Genetics Krishna Institute of Medical Sciences, Deemed to Be University Malkapur, Karad Satara, Maharashtra, Pin: 415 539, India.
Background: Last few years, several studies all over the world revealed the association of DNA repair genes with risk of developing different type of cancers, but were ambiguous to support the evidences in case of cervical cancer risk. These differences in earlier studies directed us to study the association of polymorphisms of BER genes (XRCC1, hOGG1, XPC) and NER genes (XPC, XPD) with cervical cancer susceptibility in the women of rural population of Maharashtra.
Materials And Methods: The genetic polymorphism in BER and NER pathway genes was studied by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method using DNA isolated from intravenous blood samples of patients and normal controls.
Anal Chem
May 2021
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China.
Human 8-oxoguanine DNA glycosylase (hOGG1) can initiate base excision repair of genomic 8-oxoguanine (8-oxoG), and it can locate and remove damaged 8-oxoG through extrusion and excision. Sensitive detection of hOGG1 is critical for clinical diagnosis. Herein, we develop a simple mix-and-read assay for the sensitive detection of DNA glycosylase using multiple cyclic enzymatic repairing amplification.
View Article and Find Full Text PDFJ Mol Biol
March 2021
The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA. Electronic address:
Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2'-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!