A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional interplay between melatonin receptor-mediated antiproliferative signaling and androgen receptor signaling in human prostate epithelial cells: potential implications for therapeutic strategies against prostate cancer. | LitMetric

Recently, a novel melatonin MT(1) receptor-mediated antiproliferative signaling mechanism involving transcriptional up-regulation of p27(Kip1) due to paralleled stimulation of protein kinase A (PKA) and protein kinase C (PKC), as a result of respective dual activation of upstream Gα(s) and Gα(q) , has been reported in 22Rv1 and RWPE-1 human prostate epithelial cells. Here, we demonstrate that melatonin inhibits the proliferation of LNCaP and VCaP prostate cancer cells via activation of the same MT(1) receptor-mediated antiproliferative signaling pathway. Knockdown of the expression of wild-type androgen receptor (AR) and/or structural/functional AR variants in LNCaP, VCaP, 22Rv1, and RWPE-1 cells resulted in abrogation of melatonin receptor-mediated antiproliferation, indicating that the antiproliferative signaling pathway MT(1) /(Gα(s) ) PKA + (Gα(q) ) PKC/p27(Kip1) activated by melatonin in human prostate epithelial cells is AR dependent. Furthermore, melatonin was shown to decrease androgen/AR-mediated transactivation of the prostate-specific antigen promoter in the prostate epithelial cell lines. Together, our data indicate the presence of reciprocal functional interactions between MT(1) receptor and AR signaling in malignant and nontumorigenic prostate epithelial cells. Notably, the dual actions of the MT(1) receptor-mediated antiproliferative signaling, leading to down-regulation of activated AR signaling and up-regulation of p27(Kip1) , constitute the mechanistic basis for the potential use of melatonin in chemoprevention of prostate cancer, as well as in a novel therapeutic strategy, comprising a combination of melatonin repletion and androgen depletion, for the treatment of advanced or relapsed disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-079X.2011.00890.xDOI Listing

Publication Analysis

Top Keywords

antiproliferative signaling
20
prostate epithelial
20
receptor-mediated antiproliferative
16
epithelial cells
16
human prostate
12
prostate cancer
12
mt1 receptor-mediated
12
melatonin
8
melatonin receptor-mediated
8
signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!