Autocatalysis for C-H bond activation by ruthenium(II) complexes in catalytic arylation of functional arenes.

J Am Chem Soc

Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640, 24 Rue Lhomond, 75231 Paris Cedex 5, France.

Published: July 2011

Kinetic data for the C-H bond activation of 2-phenylpyridine by Ru(II)(carboxylate)(2)(p-cymene) I (acetate) and I' (pivalate) are available for the first time. They reveal an irreversible autocatalytic process catalyzed by the coproduct HOAc or HOPiv (acetonitrile, 27 °C). The overall reaction is indeed accelerated by the carboxylic acid coproduct and water. It is retarded by a base, in agreement with an autocatalytic process induced by HOAc or HOPiv that favors the dissociation of one carboxylate ligand from I and I' and consequently the ensuing complexation of 2-phenylpyridine (2-PhPy). The C-H bond activation initially delivers Ru(O(2)CR)(o-C(6)H(4)-Py)(p-cymene) A or A', containing one carboxylate ligand (OAc or OPiv, respectively). The overall reaction is accelerated by added acetates. Consequently, C-H bond activation (faster for acetate I than for pivalate I') proceeds via an intermolecular deprotonation of the C-H bond of the ligated 2-PhPy by the acetate or pivalate anion released from I or I', respectively. The 18e complexes A and A' easily dissociate, by displacement of the carboxylate by the solvent (also favored by the carboxylic acid), to give the same cationic complex B(+) {[Ru(o-C(6)H(4)-Py)(p-cymene)(MeCN)](+)}. Complex B(+) is reactive toward oxidative addition of phenyl iodide, leading to the diphenylated 2-pyridylbenzene.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja201462nDOI Listing

Publication Analysis

Top Keywords

c-h bond
20
bond activation
16
acetate pivalate
12
autocatalytic process
8
hoac hopiv
8
reaction accelerated
8
carboxylic acid
8
carboxylate ligand
8
bond
5
autocatalysis c-h
4

Similar Publications

Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions.

View Article and Find Full Text PDF

In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Enzymatic Cascades for Stereoselective and Regioselective Amide Bond Assembly.

Angew Chem Int Ed Engl

January 2025

The University of Manchester, School of Chemistry & Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!