A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generic, anthracene-based hydrogel crosslinkers for photo-controllable drug delivery. | LitMetric

Generic, anthracene-based hydrogel crosslinkers for photo-controllable drug delivery.

Macromol Biosci

Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S4L8, Canada.

Published: July 2011

Light-responsive polymers with controllable, reversible crosslink mechanisms have the potential to create unique biomaterials with stimulus-controlled swelling, degradation and diffusion properties useful in tissue engineering and drug delivery applications. Generic photodimerizing polyethylene glycol-anthracene macromolecules that may be grafted to various polymers to effectively control their crosslinking via a photodimerization mechanism have been developed. These generic crosslinkers were shown to effectively introduce photoresponsive properties into hyaluronate and alginate as model hydrophilic polymers. In vitro testing using human corneal epithelial cells was used to demonstrate cytocompatibility of the resulting photogels. The effective crosslinking density of the photogels could be increased resulting in a decrease in the release rate of small and large molecules from the photogels following exposure to 365 nm light. This tuneable crosslinking has the potential to manipulate the delivery rates of therapeutics resulting in control over treatment profiles and may lend itself to various applications, which may benefit from light induced changes in crosslinking.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201100001DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
generic anthracene-based
4
anthracene-based hydrogel
4
hydrogel crosslinkers
4
crosslinkers photo-controllable
4
photo-controllable drug
4
delivery light-responsive
4
light-responsive polymers
4
polymers controllable
4
controllable reversible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!