Effects of N-acetylcysteine on TEGDMA- and HEMA-induced suppression of osteogenic differentiation of human osteosarcoma MG63 cells.

J Biomed Mater Res B Appl Biomater

Department of Dental Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University, Chongro-ku, Seoul 110-749, Korea.

Published: August 2011

Triethyleneglycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) are major resinous components of dental restorative materials and dentin bonding adhesives. Resin monomers are known to cause cytotoxicity in mammalian cells via oxidative stress and inhibit differentiation of dental pulp cells and osteoblasts. This study was aimed to investigate whether oxidative stress was involved in the inhibition of TEGDMA- and HEMA-induced differentiation. TEGDMA and HEMA reduced alkaline phosphatase (ALP) activity and the mRNA expression of the osteopontin (OPN) gene in MG63 cells at noncytotoxic concentrations. On the other hand, N-acetylcysteine (NAC) did not affect ALP activity at concentrations below 10 mM. Reduced ALP activity and OPN mRNA expression by TEGDMA were partially recovered via cotreatment with NAC. However, NAC did not exhibit significant effects in HEMA-treated cells. Glutathione (GSH) levels were also down-regulated by both TEGDMA and HEMA. The addition of NAC induced the partial recovery of GSH in cells treated with 0.5 mM TEGDMA. On the other hand, the levels of GSH in HEMA-treated cells were not affected by NAC. These results suggest that oxidative stress is involved in the suppression of differentiation by TEGDMA. Translocation of Nrf2 from the cytoplasm to the nucleus has been known to play a role in the suppression of osteogenic differentiation by oxidative stress. However, Nrf2 did not move into the nucleus in resin monomer-treated MG63 cells, suggesting the contribution of other signaling pathways to the suppressive effects of resin monomers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.31852DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
mg63 cells
12
alp activity
12
tegdma- hema-induced
8
suppression osteogenic
8
osteogenic differentiation
8
cells
8
resin monomers
8
stress involved
8
differentiation tegdma
8

Similar Publications

Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.

Results: Forty male Wistar rats divided into five groups of eight rats were used.

View Article and Find Full Text PDF

Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.

View Article and Find Full Text PDF

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Effects of aluminum on metabolism of reactive oxygen species and reactive nitrogen species in root tips of different Eucalyptus species.

BMC Plant Biol

January 2025

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.

On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.

View Article and Find Full Text PDF

Doxorubicin or Epirubicin Versus Liposomal Doxorubicin Therapy-Differences in Cardiotoxicity.

Cardiovasc Toxicol

January 2025

Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.

Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!