Embryonic stem cells (ESCs) have shown the potential to restore cardiac function after myocardial injury. Superparamagnetic iron oxide nanoparticles (SPIO) have been widely employed to label ESCs for cellular MRI. However, nonspecific intracellular accumulation of SPIO limits long-term in vivo assessment of the transplanted cells. To overcome this limitation, a novel reporter gene (RG) has been developed to express antigens on the ESC surface. By employing SPIO-conjugated monoclonal antibody against these antigens (SPIO-MAb), the viability of transplanted ESCs can be detected in vivo. This study aims to develop a new molecular MRI method to assess in vivo ESC viability, proliferation, and teratoma formation. The RG is designed to express 2 antigens (hemagglutinin A and myc) and luciferase on the ESC surface. The two antigens serve as the molecular targets for SPIO-MAb. The human and mouse ESCs were transduced with the RG (ESC-RGs) and transplanted into the peri-infarct area using the murine myocardial injury model. In vivo MRI was performed following serial intravenous administration of SPIO-MAb. Significant hypointense signal was generated from the viable and proliferating ESCs and subsequent teratoma. This novel molecular MRI technique enabled in vivo detection of early ESC-derived teratoma formation in the injured murine myocardium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381354 | PMC |
http://dx.doi.org/10.1002/mrm.22929 | DOI Listing |
Biomed Eng Online
January 2025
Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong, 525011, People's Republic of China.
Background: Epidermal growth factor receptor (EGFR) gene mutations can lead to distant metastasis in non-small cell lung cancer (NSCLC). When the primary NSCLC lesions are removed or cannot be sampled, the EGFR status of the metastatic lesions are the potential alternative method to reflect EGFR mutations in the primary NSCLC lesions. This review aimed to evaluate the potential of magnetic resonance imaging (MRI) radiomics based on extrapulmonary metastases in predicting EGFR mutations through a systematic reviews and meta-analysis.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Otolaryngology - Head and Neck Surgery, section Ear & Hearing, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
Purpose: Scanning during infancy is often required in otology, preferably without general anaesthesia. This study aims to determine the success rate of MRI of the head without general anaesthesia for infants, and to identify predictors for a successful scan.
Methods: Data was extracted from the electronic patient file for patients who received MRI of the head without general anaesthesia between 01-01-2019 and 31-12-2022 at an age younger than 6 months.
Commun Biol
January 2025
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Histological chorioamnionitis (HCA) is a form of maternal immune activation (MIA) linked to an increased risk of neurodevelopmental disorders in offspring. Our previous study identified neurodevelopmental impairments in an MIA mouse model mimicking HCA. Thus, this study investigated the role of CD11c microglia, key contributors to myelination through IGF-1 production, in this pathology.
View Article and Find Full Text PDFNat Commun
January 2025
NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.
View Article and Find Full Text PDFJ Neurosci
January 2025
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!