A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amino acid biosynthetic cost and protein conservation. | LitMetric

Amino acid biosynthetic cost and protein conservation.

J Mol Evol

Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.

Published: June 2011

Protein products of highly expressed genes tend to favor amino acids that have lower average biosynthetic costs (i.e., they exhibit metabolic efficiency). While this trend has been observed in several studies, the specific sites where cost-reducing substitutions accumulate have not been well characterized. Toward that end, weighted costs in conserved and variable positions were evaluated across a total of 9,119 homologous proteins in four mammalian orders (primate, carnivore, rodent, and artiodactyls), which together contain a total of 20,457,072 amino acids. Degree of conservation at homologous positions in these mammalian proteins and average-weighted cost across all positions within a single protein are significantly correlated. Dividing human genes into two classes (those with and those without CpG islands in their promoters) suggests that humans also preferentially utilize less costly amino acids in highly expressed genes. In contrast to the intuitive expectation that the relatively weak selective force associated with metabolic efficiency would be a selection pressure in complex multicellular organisms, the overall level of selective constraint within the variable regions of mammalian proteins allows the metabolic efficiency to derive a reduction of overall biosynthetic cost, particularly in genes with the highest levels of expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-011-9445-4DOI Listing

Publication Analysis

Top Keywords

amino acids
12
metabolic efficiency
12
biosynthetic cost
8
highly expressed
8
expressed genes
8
mammalian proteins
8
amino
4
amino acid
4
acid biosynthetic
4
cost protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!