In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders (P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00114-011-0804-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!