Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH(3)(+)). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH(3)(+) were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH(3)(+) were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1nr10080g | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, FI-00076, Finland.
Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.
Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.
Single-walled carbon nanotubes (SWCNTs) are fluorescent materials that have been developed as sensors for measuring the activities of enzymes. However, most sensors to date rely on end-point measurement and empirical functions to correlate enzyme concentrations with fluorescence responses. Less emphasis is put on analyzing time-dependent fluorescence responses and their connections with enzymatic kinetics.
View Article and Find Full Text PDFCureus
November 2024
Department of Conservative Dentistry and Endodontics, SRM Kattankulathur Dental College, Chennai, IND.
Introduction: This study aimed to evaluate the antimicrobial efficacy of single-walled carbon nanotubes when combined with the commonly used intracanal medicaments by checking their zone of inhibition against .
Materials And Methods: The test materials were divided into five different groups, namely, Group I: single-walled carbon nanotubes; Group II: calcium hydroxide; Group III: chlorhexidine; Group IV: single-walled carbon nanotubes + calcium hydroxide; and Group V: single-walled carbon nanotubes + chlorhexidine. Five sterile Petri plates per group were inoculated with (); wells were made in the plates, one on each side, and a volume of 50 microliters of each solution was dispensed into individual wells using a pipette.
Sci Rep
December 2024
Department of physics, Faculty of Science, Malayer University, Malayer, Iran.
This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!