Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes.

Phys Chem Chem Phys

Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.

Published: June 2011

We have studied non-covalent functionalization of boron nitride nanotubes (BNNTs) with benzene molecule and with seven other different heterocyclic aromatic rings (furan, thiophene, pyrrole, pyridine, pyrazine, pyrimidine, and pyridazine, respectively). A hybrid density functional theory (DFT) method with the inclusion of dispersion correction is employed. The structural and electronic properties of the functionalized BNNTs are obtained. The DFT calculation shows that upon adsorption to the BNNT, the center of aromatic rings tend to locate on top of the nitrogen site. The trend of adsorption energy for the aromatic rings on the BNNTs shows marked dependence on different intermolecular interactions, including the dispersion interaction (area of the delocalized π bond), the dipole-dipole interaction (polarization), and the electrostatic repulsion (lone pair electrons). The DFT calculation also shows that non-covalent functionalization of BNNTs with aromatic rings can give rise to new impurity states within the band gap of pristine BNNTs, suggesting possible carrier doping of BNNTs via selective adsorption of aromatic rings.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cp20534jDOI Listing

Publication Analysis

Top Keywords

aromatic rings
20
adsorption aromatic
8
boron nitride
8
nitride nanotubes
8
non-covalent functionalization
8
dft calculation
8
aromatic
6
bnnts
6
rings
5
initio theoretical
4

Similar Publications

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

One-Pot Transition-Metal-Free Synthesis of π-Extended Bipolar Polyaromatic Hydrocarbons.

Angew Chem Int Ed Engl

January 2025

Instytut Chemii Organicznej PAN: Instytut Chemii Organicznej Polskiej Akademii Nauk, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.

The development of straightforward synthetic methods for photoactive polycyclic aromatic hydrocarbons (PAHs) that avoid Pd-catalyzed or radical-based processes remains a challenge. Such methods are essential to reducing the cost and environmental impact of organic photodevices. In this work, we present a one-pot synthetic approach for creating novel bipolar PAHs with extended π-conjugation, which are not accessible via conventional Pd-catalyzed routes.

View Article and Find Full Text PDF

Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.

View Article and Find Full Text PDF

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

A novel diphenyl-anthraquinone compound, cassuquinone A, was isolated from the rhizomes of Zingiber cassumunar. Structural elucidation was accomplished using detailed NMR and HRMS-ESI  techniques, revealing a symmetrical anthraquinone core with methoxylated aromatic rings. Cassuquinone A exhibited potent α-glucosidase inhibitory activity with an IC₅₀ of 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!