Despite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA). However, the existence of geminivirus related DNA (GRD) integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW) lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW) begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported) date for the split is between 20 and 30 MYA--a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095596 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019193 | PLOS |
Virus Res
January 2025
Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China. Electronic address:
Lassa virus genome consists of two single-stranded, negative-sense RNA segments that lie in the genus Arenavirus. The disease associated with the Lassa virus is distributed all over the world, with approximately 3,000,000-5,000,000 infections diagnosed annually in West Africa. It shows high health risks to the human being.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306, Ploen, Germany.
The human immune system can recognize, attack, and eliminate cancer cells, but cancers can escape this immune surveillance. Variants of ecological predator-prey models can capture the dynamics of such cancer control mechanisms by adaptive immune system cells. These dynamical systems describe, e.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China. Electronic address:
Fruit features are crucial for plant propagation, population growth, biodiversity preservation, and evolutionary survival. However, the synergistic regulatory mechanisms underlying the development of fruit traits such as color, shape and duration are unclear. Euscaphis japonica, whose fruits have a red-winged pericarp and persist for a long period of time, is an important ornamental plant in eastern Asia.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China.
The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to higher-order oxygenic cynobacteria and plants highlights a remarkable journey of structural and functional diversification as an adaptation to environmental conditions. The role of chirality in these centers is important, influencing the arrangement and function of key molecules involved in photosynthesis. Investigating the role of chirality may provide a deeper understanding of photosynthesis and the evolutionary history of life on Earth.
View Article and Find Full Text PDFSci Total Environ
January 2025
University of Antwerp, ECOSPHERE, Wilrijk, 2610, Belgium.
Salt marshes are known as key ecosystems for nature-based climate mitigation through organic carbon sequestration into their sediment beds, but at the same time they are affected by accelerating sea level rise induced by climate warming. Consequently, an important question is how organic carbon accumulation rates (OCAR) of salt marshes will respond to future accelerating rates of relative sea level rise (RSLR). To date, existing insights are either based on (1) comparison of geographically distant marsh sites, differing in local RSLR rates but also in other environmental conditions that additionally can affect OCAR, or (2) experiments in given marsh sites, in which proxies for RSLR are manipulated, but run over periods of years instead of decades, the latter being the relevant time scale of marsh responses to RSLR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!