Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. We develop SciPort, a Web-based platform on supporting scientific data management and integration based on a central server based distributed architecture, where researchers can easily collect, publish, and share their complex scientific data across multi-institutions. SciPort provides an XML based general approach to model complex scientific data by representing them as XML documents. The documents capture not only hierarchical structured data, but also images and raw data through references. In addition, SciPort provides an XML based hierarchical organization of the overall data space to make it convenient for quick browsing. To provide generalization, schemas and hierarchies are customizable with XML-based definitions, thus it is possible to quickly adapt the system to different applications. While each institution can manage documents on a Local SciPort Server independently, selected documents can be published to a Central Server to form a global view of shared data across all sites. By storing documents in a native XML database, SciPort provides high schema extensibility and supports comprehensive queries through XQuery. By providing a unified and effective means for data modeling, data access and customization with XML, SciPort provides a flexible and powerful platform for sharing scientific data for scientific research communities, and has been successfully used in both biomedical research and clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098743PMC
http://dx.doi.org/10.1117/12.773154DOI Listing

Publication Analysis

Top Keywords

scientific data
24
data
13
xml based
12
data management
12
scientific
9
management integration
8
central server
8
complex scientific
8
sciport xml
8
sciport
6

Similar Publications

Background: Contrary to popular concerns about the harmful effects of media use on mental health, research on this relationship is ambiguous, stalling advances in theory, interventions, and policy. Scientific explorations of the relationship between media and mental health have mostly found null or small associations, with the results often blamed on the use of cross-sectional study designs or imprecise measures of media use and mental health.

Objective: This exploratory empirical demonstration aimed to answer whether mental health effects are associated with media use experiences by (1) redirecting research investments to granular and intensive longitudinal recordings of digital experiences to build models of media use and mental health for single individuals over the course of one entire year, (2) using new metrics of fragmented media use to propose explanations of mental health effects that will advance person-specific theorizing in media psychology, and (3) identifying combinations of media behaviors and mental health symptoms that may be more useful for studying media effects than single measures of dosage and affect or assessments of clinical symptoms related to specific disorders.

View Article and Find Full Text PDF

This paper aims to reveal the changing characteristics of the contribution rates of different production factors in China since the reform and opening up from two dimensions: stage and space. The study used national data from 1978 to 2021 and provincial data from 2000 to 2020, combined with methods such as C-D production function and spatial econometrics for analysis. Research has found that: (1) In terms of stage characteristics, during the structural adjustment stage (1978-1998), economic growth mainly relies on capital and labor input, and the contribution rate of land factors gradually decreases.

View Article and Find Full Text PDF

In this paper, we explore the application of Artificial Intelligence and network science methodologies in characterizing interdisciplinary disciplines, with a specific focus on the field of Italian design, taken as a paradigmatic example. Exploratory data analysis and the study of academic collaboration networks highlight how the field is evolving towards increased collaboration. Text analysis and semantic topic modelling identified the evolution of research interest over time, defining a ranking of pairs of keywords and three prominent research topics: User-Centric Experience Design, Innovative Product Design and Sustainable Service Design.

View Article and Find Full Text PDF

This study examines disparities in research retractions due to misconduct, identifying countries with the highest retraction counts and those disproportionately represented relative to population and publication output. The findings emphasize the need for improved research integrity measures.

View Article and Find Full Text PDF

Objectives: The Wolverine cutting balloon (CB) (Boston Scientific) is a specialized balloon catheter with microsurgical blades that is used for balloon-resistant lesions. The Manufacturer and User Facility Device Experience (MAUDE) database serves as a repository for reports of medical device complications. The aim of this study was to analyze complications associated with CB use during percutaneous coronary intervention in real-world contemporary practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!