Objectives: To assess the presence of a local angiotensin-generating systems (LAGS) and its participation in tumor growth in the human pancreatic cancer derived cell line Capan-1.
Methods: Capan-1 cells were cultured in Dulbecco modified Eagle medium, and angiotensin I was assayed by radioimmunoassay and angiotensin II and vascular endothelial growth factor were assayed by enzyme-linked immunosorbent assay in the supernatant. Immunohistochemistry and reverse transcription-polymerase chain reaction were performed for the expression of AT1 and AT2 receptors. Angiotensin II binding assays and blockade were studied.
Results: High levels of both angiotensins I and II were found in Capan-1 cells, although neither angiotensin I nor angiotensin II was detected in the cell culture supernatant. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that Capan-1 cells do not express AT1 and AT2 receptors; however, specific binding to the cell membrane was identified for angiotensin II. Neither exogenous angiotensin II nor Dup753 (specific AT1 receptor blocker) affected Capan-1 cells' proliferation or vascular endothelial growth factor secretion.
Conclusions: Detection of both angiotensin I and angiotensin II along with specific binding of angiotensin II in Capan-1 cells provides evidence of the existence of a LAGS that operates in an intracrine manner. Intracellular angiotensin II may play a role in the aggressiveness of pancreatic cancer and is a possible target for therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MPA.0b013e318215a891 | DOI Listing |
Int J Mol Sci
January 2025
Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.
Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia. Electronic address:
Building on previous research indicating the robust biological effects of coumarins, we focused on exploring imino-coumarin 2-benzazole conjugates. Compounds were tested for antiproliferative activity in vitro, with the most active ones further examined to determine the mechanism of biological action. Five derivatives exhibited significant antiproliferative activity against all tested cancer cells (IC ranging from 0.
View Article and Find Full Text PDFPeerJ
November 2024
Vocational High School of Health Care Services, Department of Medical Services and Techniques, Kırıkkale University, Kırıkkale, Yahşihan, Turkey.
Oncology
October 2024
Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!