Purpose: To evaluate the tolerability, comfort, and reliability of the signal transmission of an ocular Sensor used for 24-hour intraocular pressure fluctuation monitoring in humans.

Patients And Methods: In this uncontrolled open trial involving 10 healthy volunteers, an 8.7-mm radius prototype ocular telemetry Sensor (SENSIMED Triggerfish, Lausanne, Switzerland) and an orbital bandage containing a loop antenna were applied and connected to a portable recorder after full eye examination. Best-corrected visual acuity and position, surface wetting ability, and mobility of the Sensor were assessed after 5 and 30 minutes, 4, 12, and 24 hours. Subjective wearing comfort was scored and activities documented in a logbook. After Sensor removal, a full eye examination was repeated and the recorded signal analyzed.

Results: The comfort score was high and did not fluctuate significantly over time. The mobility of the Sensor was limited across follow-up visits and its surface wetting ability remained good. Best-corrected visual acuity was significantly reduced during Sensor wear and immediately after its removal (from 1.07 before, to 0.85 after, P value 0.008). Three subjects developed a mild, transient corneal abrasion. In all but 1 participant, we obtained usable data of a telemetric signal recording with sufficient sensitivity to depict ocular pulsation.

Conclusions: This 24-hour trial has encouraging results on the tolerability and functionality of the ocular telemetric Sensor for intraocular pressure fluctuation monitoring. Further studies with different Sensor radii conducted on a larger study population are needed to improve comfort, precision, and interpretation of the telemetric signal.

Download full-text PDF

Source
http://dx.doi.org/10.1097/IJG.0b013e31821dac43DOI Listing

Publication Analysis

Top Keywords

intraocular pressure
12
pressure fluctuation
12
fluctuation monitoring
12
sensor
9
24-hour intraocular
8
ocular telemetry
8
telemetry sensor
8
tolerability functionality
8
full eye
8
eye examination
8

Similar Publications

High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments.

View Article and Find Full Text PDF

Objective: To evaluate the effects of Fanconi anemia (FA) on retinal and choroidal microvasculature using Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA).

Design: Cohort study with age-matched controls.

Subjects And Participants: This study included 11 eyes from 11 patients diagnosed with FA and 12 eyes from 12 age-matched healthy controls.

View Article and Find Full Text PDF

Temporal impacts of diverse concentrations of pilocarpine ophthalmic solution on human accommodation.

Clin Exp Optom

January 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Clinical Relevance: Accommodation is crucial for clear near vision and is predominantly affected by presbyopia. The ability to modulate accommodative function with eye drops could offer a pharmacological approach to manage presbyopia.

Background: To investigate the effects of different concentrations of pilocarpine eye drops on ocular accommodation in young volunteers.

View Article and Find Full Text PDF

Glaucoma is an irreversible, progressive, degenerative eye disorder arising because of increased intraocular pressure, resulting in eventual vision loss if untreated. The QSPR relates, mathematically, by employing various algorithms, a specified property of a molecule that arises either from physical, chemical, or biological phenomena using various aspects of its structure. Here in, a similar application based on topological indices and inferences derived from the structure for the calculation of different drug properties like molar refractivity, refractive index, enthalpy, boiling points, molecular weight, and polarizability is presented.

View Article and Find Full Text PDF

Short-term orthokeratology effects on corneal biomechanics with a focus on SPA1 and stress-strain index (SSI) parameters in pediatric myopia.

Arq Bras Oftalmol

January 2025

Department of Ophthalmology, Guangdong Eye Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences. No. 106 Zhongshan Er Road, Guangzhou 510080, China.

Purpose: Although the orthokeratology effects on corneal biomechanics have been proven with clinical trials, reports of stiffness parameter change are scarce. This study investigated the short-term orthokeratology effects in pediatric myopia and compared stiffness parameter changes to those published in recent clinical investigations. This prospective study aimed to investigate corneal biomechanics changes induced by short-term overnight orthokeratology treatment, focusing on stiffness parameter at A1 and stress-strain index.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!