Anxiety is a multi-etiology disorder influenced by both genetic background and environment. To study the impact of a genetic predisposition, we developed a novel mouse model of anxiety using a combination of crossbreeding and behavioral selection. Comparison of the transcriptomes from the prefrontal cortex and hippocampus of anxious and control mice revealed that the numbers of significantly up- and down-regulated genes were modest, comprising approximately 2% of the tested genes. Functional analysis of the significantly altered gene sets showed that functional groups such as nervous system development, behavior, glial cell differentiation and synaptic transmission were significantly enriched among the up-regulated genes, whereas functional groups such as potassium ion transport, Wnt signaling and neuropeptidergic signaling were significantly enriched among the down-regulated genes. Many of the identified genes and functional groups have been previously linked to the molecular biology of anxiety, while several others, such as transthyretin, vasoactive intestinal polypeptide and various potassium ion channels, are novel or not as well described in this context. Supporting the gene expression data, we also found increased excitability in the hippocampi of anxious mice, which can be a phenotypic result of decreased potassium channel density. Our transcriptome screen showed that the initiation and/or effect of anxiety involve multiple pathways and cellular processes. The identified novel genes and pathways could be involved in the molecular pathogenesis of anxiety and provide potential targets for further drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1734-1140(11)70501-1DOI Listing

Publication Analysis

Top Keywords

genes functional
12
functional groups
12
transcriptomes prefrontal
8
prefrontal cortex
8
cortex hippocampus
8
mouse model
8
model anxiety
8
down-regulated genes
8
potassium ion
8
anxiety
6

Similar Publications

Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04.

Ecotoxicol Environ Saf

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.

View Article and Find Full Text PDF

Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).

View Article and Find Full Text PDF

KSHV hijacks the antiviral kinase IKKε to initiate lytic replication.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.

View Article and Find Full Text PDF

Composition and functional diversity of soil and water microbial communities in the rice-crab symbiosis system.

PLoS One

January 2025

Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America.

Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!