Interactions between brainstem noradrenergic neurons and the nucleus accumbens shell in modulating memory for emotionally arousing events.

Learn Mem

Department of Psychology, Graduate Program in Neuroscience, University of Virginia, Charlottesville, Virginia 22904, USA.

Published: June 2011

The nucleus accumbens shell (NAC) receives axons containing dopamine-β-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these mnemonic effects are mediated by norepinephrine (NE) release from NTS terminals onto NAC neurons. The present studies approached this question by examining the contribution of NAC α-noradrenergic receptors in mediating this effect and assessed whether glutamatergic activation of the NTS alters NE concentrations in the NAC. Rats were trained for 6 d to drink from a water spout located at the end of an inhibitory avoidance chamber. On day 7, a 0.35-mA footshock was initiated once the rat approached the spout and remained active until it escaped into the neutral compartment. Blockade of α-noradrenergic receptors in the NAC with phentolamine (0.5 µg/0.5 µL) attenuated memory enhancement produced by glutamatergic (50 ng/0.5 µL) infusion on NTS neurons (P < 0.01). Experiment 2 used in vivo microdialysis to assess whether glutamate activation of NTS alters NAC NE concentrations. NE levels were unchanged by NTS infusion of phosphate-buffered saline (PBS) or low dose glutamate (50 ng/0.5 µL) but elevated significantly (P < 0.05) by combining the same dose with the footshock (0.35 mA, 2 sec) given in Study 1 or infusion of (100 ng/0.5 µL) glutamate alone. Findings demonstrate that NE released from NTS terminals enhances representations in memory by acting on α-noradrenergic receptors within the NAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101775PMC
http://dx.doi.org/10.1101/lm.2108911DOI Listing

Publication Analysis

Top Keywords

α-noradrenergic receptors
12
ng/05 µl
12
neurons nucleus
8
nucleus accumbens
8
accumbens shell
8
nac
8
nts
8
memory enhancement
8
enhancement produced
8
nts neurons
8

Similar Publications

Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.

Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.

View Article and Find Full Text PDF

The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction.

Cell Commun Signal

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.

Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!