We examined rice responses to a rare sugar, d-psicose. Rice growth was inhibited by d-psicose but not by common sugars. Microarray analysis revealed that d-psicose treatment caused an upregulation of many defense-related genes in rice, and dose-dependent upregulation of these genes was confirmed by quantitative reverse-transcription polymerase chain reaction. The level of upregulation of defense-related genes by d-psicose was low compared with that by d-allose, which is another rare sugar known to confer induction of resistance to rice bacterial blight in rice. Treatment with d-psicose conferred resistance to bacterial blight in rice in a dose-dependent manner, and the results indicate that d-psicose might be a candidate plant activator for reducing disease development in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2011.04.003 | DOI Listing |
Plants (Basel)
December 2024
Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
Maize leaf blight (MLB), caused by the fungus , is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.
View Article and Find Full Text PDFPhysiol Plant
December 2024
College of Horticulture, Gansu Agricultural University, Lanzhou, China.
Valsa canker, caused by fungal pathogens in Valsa species, is a fungal disease of apple and pear growing in China and even in Asia. Malectin-like kinases play crucial roles in plant recognition of the pathogen-induced signals and subsequent activation of partially host immune responses. However, the role of MEDOS1 (MDS1), a Malectin-like kinase, in plant immunity has not yet been extensively explored.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
f. sp. () secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection.
View Article and Find Full Text PDFJ Virol
December 2024
Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA.
Unlabelled: transmits Liberibacter asiaticus (CLas) between citrus plants which causes the expression of huanglongbing disease in citrus. flavi-like virus (DcFLV) co-occurs intracellularly with CLas in populations in the field. However, the impact(s) of DcFLV presence on the insect vector and its interaction with the CLas phytopathogen remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!