Background: The present study sought to investigate pathologic changes in tendon, expression of basic fibroblast growth factor (bFGF) and collagen type I, and effects of safflower yellow (SY) on the process of tendon injury-repair.

Materials And Methods: A tendon injury-repair model was used, and stereology, biomechanics, and immunohistochemistry were employed to assess the benefits of local application of SY for the repair. In this model, the flexor digitorum profundus muscle tendon of the third digit was transected bilaterally, and the transected ends sutured. Data were analyzed with SPSS ver. 10.0 software (SPSS Inc., Chicago, IL).

Results: The adhesion to surrounding tissues and tensile strength gradually increased after the injury and repair in control (no-SY) tendons, and were significantly greater by the sixth wk than any other time. In the SY tendons, adhesion was significantly lower, and tensile strength significantly higher than in no-SY tendons at the same post-injury-suture time points. An inflammatory reaction was observed in the injury-repair areas of the tendon by the end of first wk post-injury-suture, and reached its peak by the end of second wk. The inflammatory reaction was significantly less in SY tendons than in controls. Immunostaining for bFGF occurred in the tendon injury-repair areas by the end of first wk, and the number of bFGF positive cells reached a peak by the end of second wk, with a greater abundance in SY than control tendons from the second to sixth wk. Expression of collagen type I protein was observed in the injury-repair areas as well, coincident with bFGF, and was remarkably higher in SY than in controls.

Conclusions: Tendon adhesion and tensile strength increased with time post-injury-suture repair, as did expression of bFGF and collagen type I protein in the injured area. SY enhanced expression of bFGF and collagen type I protein, enhanced the tensile strength of the injured tendon, and alleviated the injured tendon adhesion and inflammatory reaction. The results indicated that SY promoted the repair of injured tendon by up-regulating expression of bFGF and collagen type I protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2011.03.079DOI Listing

Publication Analysis

Top Keywords

collagen type
20
bfgf collagen
16
tensile strength
16
type protein
16
tendon injury-repair
12
inflammatory reaction
12
injury-repair areas
12
expression bfgf
12
injured tendon
12
tendon
11

Similar Publications

Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.

View Article and Find Full Text PDF

Purpose: To evaluate whether cumulative impact load and serum biomarkers are related to lower-extremity injury and to determine any impact load and cartilage biomarker relationships in collegiate female basketball athletes.

Methods: This was a prospective longitudinal study evaluating lower-extremity impact load, serum cartilage biomarkers, and injury incidence over the course of a single collegiate women's basketball season. Data were collected from August 2022 to April 2023; no other follow-up after the cessation of the season was conducted in this cohort.

View Article and Find Full Text PDF

Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

The aim of this study was to investigate the potential mechanism of Lu-Jiao Fang (LJF) inhibiting endothelial-to-mesenchymal transition (EndMT) in pressure overload-induced cardiac fibrosis. Pharmacokinetic behaviors of the ingredients of LJF were evaluated by LC-MS/MS analysis. Then putative pathways by which LJF regulates EndMT were analyzed by network pharmacology and verified in transverse aortic constriction-induced cardiac fibrosis rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!