A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lipophilicity of acidic compounds: impact of ion pair partitioning on drug design. | LitMetric

Lipophilicity of acidic compounds: impact of ion pair partitioning on drug design.

Bioorg Med Chem Lett

Department of Chemistry, AstraZeneca R&D Charnwood, Loughborough, Leicestershire, UK.

Published: June 2011

In drug discovery projects the ability to show a relationship between a compound's molecular structure and its pharmacokinetic, in vivo efficacy, or toxicity profile is paramount for the design of better analogues. To aid this understanding the measurement of distribution coefficients at some physiologically relevant pH, for example, log D(7.4), is common practice as they are used as a key descriptor in mathematical models for predicting various biological parameters. Evidence is presented that under typical experimental conditions ion pair partitioning can contribute greatly to log D(7.4) results for acidic compounds; if this is ignored it may compromise data analysis within drug discovery projects where the modulation of lipophilicity is a primary design strategy. The work herein focuses on acidic compounds and reflects the experience of AstraZeneca R&D Charnwood (AZ) where ion pair partitioning contributions can be minimized by the routine measurement of log D(5.5) data. The magnitude of ion pair partitioning contributions to the log D(7.4) measurements of 24 acidic drugs are investigated, and the risks to drug discovery projects that ignore such contributions are discussed. The superiority of measured lipophilicity data over calculated data for a set of AZ proprietary acidic compounds is also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.04.133DOI Listing

Publication Analysis

Top Keywords

acidic compounds
16
ion pair
16
pair partitioning
16
drug discovery
12
discovery projects
12
log d74
12
partitioning contributions
8
lipophilicity acidic
4
compounds
4
compounds impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!