A new HPLC-ESI-MS/MS method for the determination of glucosamine (2-amino-2-deoxy-d-glucose) in rabbit cartilage was developed and optimized. Glucosamine was extracted from cartilage by cryogenic grinding followed by protein precipitation with trichloroacetic acid. The HPLC separation was achieved with a polymer-based amino column using a mobile phase composed of 10mM ammonium acetate (pH 7.5)-acetonitrile (20:80%, v/v) at 0.3 mL min flow rate. d-[1-(13)C]Glucosamine was used as internal standard. Selective detection was performed by tandem mass spectrometry with electrospray source, operating in positive ionization mode and in multiple reaction monitoring acquisition (m/z 180→72 and 181→73 for glucosamine and internal standard, respectively). Limit of quantification was 0.045 ng injected, corresponding to 0.25 μg g⁻¹ in cartilage. Linearity was obtained up to 20 μg g⁻¹ (R(2)>0.991). Precision values (%R.S.D.) were <10%. Accuracy (% bias) ranged from -6.0% to 12%. Mean recoveries obtained at 3 concentration levels were higher than 81% (%R.S.D.≤8%). The method was applied to measure glucosamine levels in rabbit cartilage and plasma after single oral administration of glucosamine sulfate at a dose of 98 mg kg⁻¹(n=6). Glucosamine was present in cartilage in physiological condition before the treatment. After dosing, mean concentration of cartilage glucosamine significantly increased from 461 to 1040 ng g⁻¹. Cartilage glucosamine levels resulted to be well correlated with plasma concentrations, which therefore are useful to predict the target cartilage concentration and its pharmacological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2011.04.003DOI Listing

Publication Analysis

Top Keywords

rabbit cartilage
8
mass spectrometry
8
internal standard
8
μg g⁻¹
8
identification quantification
4
glucosamine
4
quantification glucosamine
4
glucosamine rabbit
4
cartilage
4
cartilage correlation
4

Similar Publications

Background: Acupuncture is an effective treatment for knee osteoarthritis (KOA), reducing pain and improving function. While melatonin (MLT) has notable pain relief benefits, the analgesic mechanism of acupuncture in KOA and its relationship with melatonin are still unknown. This study aims to explore this mechanism.

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.

View Article and Find Full Text PDF

The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.

View Article and Find Full Text PDF

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!