In this study we integrated between confocal-based cell-specific finite element (FE) modeling and Virtual Cell (VC) transport simulations in order to determine trends of relationship between externally applied compressive deformations and build-up rates of oxygen in myoblast cells, and to further test how mild culture temperature drops (~3°C) might affect such trends. Geometries of two different cells were used, and each FE cell model was computationally subjected to large compressive deformations. Build-up of oxygen concentrations within the deformed cell shapes over time were calculated using the VC software. We found that the build-up of oxygen in the cells was slightly but consistently hindered when compressive cell deformations were applied. Temperature drops characteristic to ischemic conditions further hinder the oxygen built-up in cells. In a real-world condition, a combination of the deformation and temperature factors should be anticipated, and their combined effect might substantially impair cell respiration functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2011.04.008 | DOI Listing |
J Phys Condens Matter
January 2025
University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, CHINA.
Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Sci Rep
January 2025
State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
Cureus
December 2024
Pediatric Medicine, Rajendra Institute of Medical Sciences, Ranchi, IND.
Bone Joint Res
January 2025
Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA.
Aims: The "2 to 10% strain rule" for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!