Membrane bioreactor biofouling is usually described as an extracellular matrix in which biopolymers, inorganic salts and active microbes co-exist. For that reason, biomineralization (BM) models can be useful to describe the spatial organization and environmental constraints within the referred scenario. BM arguments were utilized as background in order to (1) evaluate CaCO(3) influence on flux decline; pore blocking and cake layer properties (resistance, permeability and compressibility) in a wide range of Chitosan/Bovine serum albumin (BSA) mixtures during step-pressure runs and, (2) perform membrane autopsies in order to explore the genesis of mineralized extracellular building blocks (MEBB) during cake layer build up. Using low molecular weight chitosan (LC) and BSA, 2 L of 5 LC/BSA mixtures (0.25-1.85 ratio) were pumped to an external ultra filtration (UF) membrane (23.5cm(2), hydrophobic, piezoelectric, 100kDa as molecular weight cut-off). Eight different pressure steps (40±7 to 540±21kPa) were applied. Each pressure step was held for 900 s. CaCO(3) was added to LC/BSA mixtures at 0.5, 1.5 and 3mM in order to create MEBB during the filtration tests. Membrane autopsies were performed after the filtration tests using thermo gravimetric, scanning microscopy and specific membrane mass (mgcm(-2)) analyses. Biopolymer-CaCO(3) step-pressure filtration created compressible cake layers (with inner voids). The formation of an internal skeleton of MEBB may contribute to irreversible fouling consolidation. A hypothesis for MEBB genesis and development was set forth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2011.04.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!