Background: Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to humans) and contain conserved motifs and landmark residues. APs fulfil critical roles in infectious organisms and their host cells. Annotation of Phytophthora APs would provide invaluable information for studies into their roles in the physiology of Phytophthora species and interactions with their hosts.

Results: Genomes of Phytophthora infestans, P. sojae and P. ramorum contain 11-12 genes encoding APs. Nine of the original gene models in the P. infestans database and several in P. sojae and P. ramorum (three and four, respectively) were erroneous. Gene models were corrected on the basis of EST data, consistent positioning of introns between orthologues and conservation of hallmark motifs. Phylogenetic analysis resolved the Phytophthora APs into 5 clades. Of the 12 sub-families, several contained an unconventional architecture, as they either lacked a signal peptide or a propart region. Remarkably, almost all APs are predicted to be membrane-bound.

Conclusions: One of the twelve Phytophthora APs is an unprecedented fusion protein with a putative G-protein coupled receptor as the C-terminal partner. The others appear to be related to well-documented enzymes from other species, including a vacuolar enzyme that is encoded in every fungal genome sequenced to date. Unexpectedly, however, the oomycetes were found to have both active and probably-inactive forms of an AP similar to vertebrate BACE, the enzyme responsible for initiating the processing cascade that generates the Aβ peptide central to Alzheimer's Disease. The oomycetes also encode enzymes similar to plasmepsin V, a membrane-bound AP that cleaves effector proteins of the malaria parasite Plasmodium falciparum during their translocation into the host red blood cell. Since the translocation of Phytophthora effector proteins is currently a topic of intense research activity, the identification in Phytophthora of potential functional homologues of plasmepsin V would appear worthy of investigation. Indeed, elucidation of the physiological roles of the APs identified here offers areas for future study. The significant revision of gene models and detailed annotation presented here should significantly facilitate experimental design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116508PMC
http://dx.doi.org/10.1186/1471-2164-12-254DOI Listing

Publication Analysis

Top Keywords

phytophthora species
12
sojae ramorum
12
phytophthora aps
12
gene models
12
phytophthora
10
phytophthora infestans
8
infestans sojae
8
aps
8
effector proteins
8
species
5

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Identification and Functional Analysis of the Gene Conferring Resistance to Late Blight () in Tomato.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.

View Article and Find Full Text PDF

Yeast two-hybrid library screening enables the discovery of novel protein-protein interactions. Identifying cytosolic host proteins targeted by host-translocated Phytophthora effector proteins relies on the mRNA amount, quality, and composition used to prepare the yeast two-hybrid cDNA library. Here we describe the steps required for the preparation of a Pinus radiata cDNA library optimized for Phytophthora effector target screening in yeast.

View Article and Find Full Text PDF

Here, we present a protocol for the isolation and detection of Phytophthora oospores directly from soil samples. Our method incorporates a novel technique for isolating Phytophthora oospores using filter pouches and an improved DNA extraction procedure specifically designed for oospores. While we have primarily developed this protocol for detecting P.

View Article and Find Full Text PDF

The establishment of reliable and efficient systems for genome editing in Phytophthora is very important for studying gene functions. Here, step-by-step methods for CRISPR/Cas9-based gene knockout and in situ complementation for Phytophthora sojae are presented. These steps include the sgRNA design, Cas9-sgRNA plasmid construction, homologous replacement, complementation vector construction, P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!